On homotopic classification of elliptic problems with contractions and $K$-groups of corresponding $C^*$-algebras
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 164-179

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider calculation of a group of stable homotopic classes for pseudodifferential elliptic boundary problems. We study this problem in terms of topological $K$-groups of some spaces in the following cases: for boundary-value problems on manifolds with boundaries, for conjugation problems with conditions on a closed submanifold of codimension one, and for nonlocal problems with contractions.
@article{CMFD_2018_64_1_a9,
     author = {A. Yu. Savin},
     title = {On homotopic classification of elliptic problems with contractions and $K$-groups of corresponding $C^*$-algebras},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {164--179},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a9/}
}
TY  - JOUR
AU  - A. Yu. Savin
TI  - On homotopic classification of elliptic problems with contractions and $K$-groups of corresponding $C^*$-algebras
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2018
SP  - 164
EP  - 179
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a9/
LA  - ru
ID  - CMFD_2018_64_1_a9
ER  - 
%0 Journal Article
%A A. Yu. Savin
%T On homotopic classification of elliptic problems with contractions and $K$-groups of corresponding $C^*$-algebras
%J Contemporary Mathematics. Fundamental Directions
%D 2018
%P 164-179
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a9/
%G ru
%F CMFD_2018_64_1_a9
A. Yu. Savin. On homotopic classification of elliptic problems with contractions and $K$-groups of corresponding $C^*$-algebras. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 164-179. http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a9/