On homotopic classification of elliptic problems with contractions and $K$-groups of corresponding $C^*$-algebras
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 164-179
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider calculation of a group of stable homotopic classes for pseudodifferential elliptic boundary problems. We study this problem in terms of topological $K$-groups of some spaces in the following cases: for boundary-value problems on manifolds with boundaries, for conjugation problems with conditions on a closed submanifold of codimension one, and for nonlocal problems with contractions.
@article{CMFD_2018_64_1_a9,
author = {A. Yu. Savin},
title = {On homotopic classification of elliptic problems with contractions and $K$-groups of corresponding $C^*$-algebras},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {164--179},
publisher = {mathdoc},
volume = {64},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a9/}
}
TY - JOUR AU - A. Yu. Savin TI - On homotopic classification of elliptic problems with contractions and $K$-groups of corresponding $C^*$-algebras JO - Contemporary Mathematics. Fundamental Directions PY - 2018 SP - 164 EP - 179 VL - 64 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a9/ LA - ru ID - CMFD_2018_64_1_a9 ER -
%0 Journal Article %A A. Yu. Savin %T On homotopic classification of elliptic problems with contractions and $K$-groups of corresponding $C^*$-algebras %J Contemporary Mathematics. Fundamental Directions %D 2018 %P 164-179 %V 64 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a9/ %G ru %F CMFD_2018_64_1_a9
A. Yu. Savin. On homotopic classification of elliptic problems with contractions and $K$-groups of corresponding $C^*$-algebras. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 164-179. http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a9/