Boundedness and finite-time stability for multivalued doubly-nonlinear evolution systems generated by a~microwave heating problem
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 148-163.

Voir la notice de l'article provenant de la source Math-Net.Ru

Doubly-nonlinear evolutionary systems are considered. Sufficient conditions of the boundedness of solutions of such systems are derived. Analogical results for a one-dimensional microwave heating problem are proved. The notions of global process and of a local multivalued process are introduced. Sufficient conditions for the finite-time stability of a global process and of a local multivalued process are shown. For local multivalued processes sufficient conditions for the finite-time instability are derived. For the one-dimensional microwave heating problem conditions of the finite-time stability are shown.
@article{CMFD_2018_64_1_a8,
     author = {S. Popov and V. Reitmann and S. Skopinov},
     title = {Boundedness and finite-time stability for multivalued doubly-nonlinear evolution systems generated by a~microwave heating problem},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {148--163},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a8/}
}
TY  - JOUR
AU  - S. Popov
AU  - V. Reitmann
AU  - S. Skopinov
TI  - Boundedness and finite-time stability for multivalued doubly-nonlinear evolution systems generated by a~microwave heating problem
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2018
SP  - 148
EP  - 163
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a8/
LA  - ru
ID  - CMFD_2018_64_1_a8
ER  - 
%0 Journal Article
%A S. Popov
%A V. Reitmann
%A S. Skopinov
%T Boundedness and finite-time stability for multivalued doubly-nonlinear evolution systems generated by a~microwave heating problem
%J Contemporary Mathematics. Fundamental Directions
%D 2018
%P 148-163
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a8/
%G ru
%F CMFD_2018_64_1_a8
S. Popov; V. Reitmann; S. Skopinov. Boundedness and finite-time stability for multivalued doubly-nonlinear evolution systems generated by a~microwave heating problem. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 148-163. http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a8/

[1] Yu. M. Berezanskiy, Expansions in Eigenfunctions of Selfadjoint Operators, Naukova dumka, Kiev, 1965 (in Russian)

[2] I. V. Ermakov, Yu. N. Kalinin, V. Reitmann, “Determining modes and almost periodic integrals for cocycles”, Diff. uravn., 47:13 (2011), 1–16 (in Russian) | MR

[3] A. L. Likhtarnikov, “Absolute stability criteria for nonlinear operator equations”, Izv. AN SSSR. Ser. Mat., 41:5 (1977), 1064–1083 (in Russian) | MR | Zbl

[4] A. L. Likhtarnikov, V. Yakubovich, “The frequency theorem for equations of evolutionary type”, Sib. mat. zh., 17:5 (1976), 790–803 (in Russian)

[5] V. Reitmann, S. N. Skopinov, “On a finite time interval stability for the one-dimensional microwave heating problem”, Vestn. SPb. un-ta. Ser. 1, 2(60):1 (2015), 54–59 (in Russian) | MR

[6] V. Reitmann, N. Yu. Yumaguzin, “Asymptotic behavior of solutions of a two-phase problem of microwave heating in the one-dimension case”, Vestn. SPb. un-ta. Ser. 1, 2012, no. 3, 59–62 (in Russian)

[7] N. G. Chetaev, “About some questions related to the problem of the stability of unsteady motions”, Prikl. mat. mekh., 34 (1960), 6–18 (in Russian) | MR

[8] Dafermos C. M., “An invariance principle for compact process”, J. Differ. Equ., 9 (1971), 239–252 | DOI | MR | Zbl

[9] Datko R., “Extending a theorem of A. M. Liapunov to Hilbert spaces”, Rend. Mat. Acc. Lincei, 5 (1994), 297–302

[10] DiBenedetto E., Vespri V., “Exponential attractors for a doubly nonlinear equation”, J. Math. Anal. Appl., 185 (1994), 321–339 | DOI | MR

[11] Eden A., Rakotoson J. M., “Continuity for bounded solutions of multiphase Stefan problem”, J. Math. Anal. Appl., 32 (1974), 610–616

[12] Glassey K., Yin H.-M., “On Maxwell's equations with a temperature effect. II”, Commun. Math. Phys., 194 (1998), 343–358 | DOI | MR | Zbl

[13] Kalinichenko D. Yu., Reitmann V., Skopinov S. N., “Asymptotic behavior of solutions to a coupled system of Maxwell's equations and a controlled differential inclusion”, Discrete Contin. Dyn. Syst., 2013, Supplement, 407–414 | MR | Zbl

[14] Kapustyan A. V., Melnik V. S., Valero J., “Attractors of multivalued dynamical processes generated by phase-field equations”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13:7 (2003), 1969–1983 | DOI | MR | Zbl

[15] Lions J. L., Magenes E., Non-homogeneous boundary value problems and applications, Springer-Verlag, Berlin–Heidelberg–N.Y., 1972 | MR | Zbl

[16] Manoranjan V. S., Showalter R., Yin H.-M., “On two-phase Stefan problem arising from a microwave heating process”, Discrete Contin. Dyn. Syst. Ser. A, 15:4 (2006), 1155–1168 | DOI | MR | Zbl

[17] Matas A., Merker J., “Strong solutions of doubly nonlinear parabolic equations”, Z. Anal. Anwend., 31:2 (2012), 217–235 | DOI | MR | Zbl

[18] Merker J., “Strong solutions of doubly nonlinear Navier–Stokes equations”, Discrete Contin. Dyn. Syst., 2011, Supplement, 1052–1060 | MR | Zbl

[19] Pankov A., Bounded and almost periodic solutions of nonlinear operator differential equations, Kluwer Academic Publishers, Dordrecht, 1990 | MR | Zbl

[20] Popov S. A., Reitmann V., “Frequency domain conditions for finite dimensional projectors and determining observations for the set of amenable solutions”, Discrete Contin. Dyn. Syst., 34:1 (2014), 249–267 | DOI | MR | Zbl

[21] Weiss L., Infante E. F., “On the stability of systems defined over a finite time interval”, Proc. Natl. Acad. Sci. USA, 54 (1965), 44–48 | DOI | MR | Zbl

[22] Yin H.-M., “On Maxwell's equations in an electromagnetic field with the temperature effect”, SIAM J. Math. Anal., 29:3 (1998), 637–651 | DOI | MR | Zbl

[23] Zyryanov D. A., Reitmann V., “Attractors in multivalued dynamical systems for the two-phase heating problem”, Electron. J. Differ. Equ. Control Processes, 4 (2017), 118–138 | MR | Zbl