Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2018_64_1_a8, author = {S. Popov and V. Reitmann and S. Skopinov}, title = {Boundedness and finite-time stability for multivalued doubly-nonlinear evolution systems generated by a~microwave heating problem}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {148--163}, publisher = {mathdoc}, volume = {64}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a8/} }
TY - JOUR AU - S. Popov AU - V. Reitmann AU - S. Skopinov TI - Boundedness and finite-time stability for multivalued doubly-nonlinear evolution systems generated by a~microwave heating problem JO - Contemporary Mathematics. Fundamental Directions PY - 2018 SP - 148 EP - 163 VL - 64 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a8/ LA - ru ID - CMFD_2018_64_1_a8 ER -
%0 Journal Article %A S. Popov %A V. Reitmann %A S. Skopinov %T Boundedness and finite-time stability for multivalued doubly-nonlinear evolution systems generated by a~microwave heating problem %J Contemporary Mathematics. Fundamental Directions %D 2018 %P 148-163 %V 64 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a8/ %G ru %F CMFD_2018_64_1_a8
S. Popov; V. Reitmann; S. Skopinov. Boundedness and finite-time stability for multivalued doubly-nonlinear evolution systems generated by a~microwave heating problem. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 148-163. http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a8/
[1] Yu. M. Berezanskiy, Expansions in Eigenfunctions of Selfadjoint Operators, Naukova dumka, Kiev, 1965 (in Russian)
[2] I. V. Ermakov, Yu. N. Kalinin, V. Reitmann, “Determining modes and almost periodic integrals for cocycles”, Diff. uravn., 47:13 (2011), 1–16 (in Russian) | MR
[3] A. L. Likhtarnikov, “Absolute stability criteria for nonlinear operator equations”, Izv. AN SSSR. Ser. Mat., 41:5 (1977), 1064–1083 (in Russian) | MR | Zbl
[4] A. L. Likhtarnikov, V. Yakubovich, “The frequency theorem for equations of evolutionary type”, Sib. mat. zh., 17:5 (1976), 790–803 (in Russian)
[5] V. Reitmann, S. N. Skopinov, “On a finite time interval stability for the one-dimensional microwave heating problem”, Vestn. SPb. un-ta. Ser. 1, 2(60):1 (2015), 54–59 (in Russian) | MR
[6] V. Reitmann, N. Yu. Yumaguzin, “Asymptotic behavior of solutions of a two-phase problem of microwave heating in the one-dimension case”, Vestn. SPb. un-ta. Ser. 1, 2012, no. 3, 59–62 (in Russian)
[7] N. G. Chetaev, “About some questions related to the problem of the stability of unsteady motions”, Prikl. mat. mekh., 34 (1960), 6–18 (in Russian) | MR
[8] Dafermos C. M., “An invariance principle for compact process”, J. Differ. Equ., 9 (1971), 239–252 | DOI | MR | Zbl
[9] Datko R., “Extending a theorem of A. M. Liapunov to Hilbert spaces”, Rend. Mat. Acc. Lincei, 5 (1994), 297–302
[10] DiBenedetto E., Vespri V., “Exponential attractors for a doubly nonlinear equation”, J. Math. Anal. Appl., 185 (1994), 321–339 | DOI | MR
[11] Eden A., Rakotoson J. M., “Continuity for bounded solutions of multiphase Stefan problem”, J. Math. Anal. Appl., 32 (1974), 610–616
[12] Glassey K., Yin H.-M., “On Maxwell's equations with a temperature effect. II”, Commun. Math. Phys., 194 (1998), 343–358 | DOI | MR | Zbl
[13] Kalinichenko D. Yu., Reitmann V., Skopinov S. N., “Asymptotic behavior of solutions to a coupled system of Maxwell's equations and a controlled differential inclusion”, Discrete Contin. Dyn. Syst., 2013, Supplement, 407–414 | MR | Zbl
[14] Kapustyan A. V., Melnik V. S., Valero J., “Attractors of multivalued dynamical processes generated by phase-field equations”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13:7 (2003), 1969–1983 | DOI | MR | Zbl
[15] Lions J. L., Magenes E., Non-homogeneous boundary value problems and applications, Springer-Verlag, Berlin–Heidelberg–N.Y., 1972 | MR | Zbl
[16] Manoranjan V. S., Showalter R., Yin H.-M., “On two-phase Stefan problem arising from a microwave heating process”, Discrete Contin. Dyn. Syst. Ser. A, 15:4 (2006), 1155–1168 | DOI | MR | Zbl
[17] Matas A., Merker J., “Strong solutions of doubly nonlinear parabolic equations”, Z. Anal. Anwend., 31:2 (2012), 217–235 | DOI | MR | Zbl
[18] Merker J., “Strong solutions of doubly nonlinear Navier–Stokes equations”, Discrete Contin. Dyn. Syst., 2011, Supplement, 1052–1060 | MR | Zbl
[19] Pankov A., Bounded and almost periodic solutions of nonlinear operator differential equations, Kluwer Academic Publishers, Dordrecht, 1990 | MR | Zbl
[20] Popov S. A., Reitmann V., “Frequency domain conditions for finite dimensional projectors and determining observations for the set of amenable solutions”, Discrete Contin. Dyn. Syst., 34:1 (2014), 249–267 | DOI | MR | Zbl
[21] Weiss L., Infante E. F., “On the stability of systems defined over a finite time interval”, Proc. Natl. Acad. Sci. USA, 54 (1965), 44–48 | DOI | MR | Zbl
[22] Yin H.-M., “On Maxwell's equations in an electromagnetic field with the temperature effect”, SIAM J. Math. Anal., 29:3 (1998), 637–651 | DOI | MR | Zbl
[23] Zyryanov D. A., Reitmann V., “Attractors in multivalued dynamical systems for the two-phase heating problem”, Electron. J. Differ. Equ. Control Processes, 4 (2017), 118–138 | MR | Zbl