Some free boundary problems arising in rock mechanics
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 98-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CMFD_2018_64_1_a6,
     author = {A. M. Meirmanov and O. V. Galtsev and O. A. Galtseva},
     title = {Some free boundary problems arising in rock mechanics},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {98--130},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a6/}
}
TY  - JOUR
AU  - A. M. Meirmanov
AU  - O. V. Galtsev
AU  - O. A. Galtseva
TI  - Some free boundary problems arising in rock mechanics
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2018
SP  - 98
EP  - 130
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a6/
LA  - ru
ID  - CMFD_2018_64_1_a6
ER  - 
%0 Journal Article
%A A. M. Meirmanov
%A O. V. Galtsev
%A O. A. Galtseva
%T Some free boundary problems arising in rock mechanics
%J Contemporary Mathematics. Fundamental Directions
%D 2018
%P 98-130
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a6/
%G ru
%F CMFD_2018_64_1_a6
A. M. Meirmanov; O. V. Galtsev; O. A. Galtseva. Some free boundary problems arising in rock mechanics. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 64 (2018) no. 1, pp. 98-130. http://geodesic.mathdoc.fr/item/CMFD_2018_64_1_a6/

[1] O. A. Ladyzhenskaya, Mathematical Problems in Viscous Incompressible Fluid Dynamics, Nauka, Moscow, 1970 (in Russian)

[2] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'tseva, Linear and Quasi-Linear Parabolic Equations, Nauka, Moscow, 1967 (in Russian) | MR

[3] L. I. Rubinstein, The Stefan Problem, Zvaigne, Riga, 1967 (in Russian) | MR

[4] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Averaging of Differential Operators, Moscow, Fizmatlit, 1993 (in Russian)

[5] Anderson T. L., Fracture mechanics. Fundamentals and applications, CRC Press, Boca Raton, 1995 | Zbl

[6] Antontsev S. N., Kazhikhov A. V., Monakhov V. N., Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, North-Holland, Amsterdam–NewYork–Oxford–Tokyo, 1990 | MR | Zbl

[7] Antontsev S., Meirmanov A., Yurinsky V., “A free boundary problem for Stokes equations: classical solutions”, Interfaces Free Bound., 2 (2000), 413–424 | DOI | MR | Zbl

[8] Böhm M., “On a nonhomogeneous Bingham fluid”, J. Differ. Equ., 60 (1985), 259–284 | DOI | MR | Zbl

[9] Brady P. V., House W. A., “Surface-controlled dissolution and growth of minerals”, Physics and chemistry of mineral surfaces, CRC Press, Boca Raton, 1996, 225–306

[10] Burridge R., Keller J. B., “Poroelasticity equations derived from microstructure”, J. Acoustic Soc. Amer., 70 (1981), 1140–1146 | DOI | Zbl

[11] Cohen C. E., Ding D., Quintard M., Bazin B., “From pore scale to wellbore scale: Impact of geometry on wormhole growth in carbonate acidization”, Chem. Eng. Sci., 63 (2008), 3088–3099 | DOI

[12] Colding T. N., Minicozzi II W. P., Pedersen E. K., “Mean Curvature Flow”, Bull. Am. Math. Soc. (N.S.), 52 (2015), 297–333 | DOI | MR | Zbl

[13] Fernández-Cara E., Guillén F., Ortega R. R., “Some theoretical results for visco-plastic and dilatant fluids with variable density”, Nonlinear Methods Appl., 28 (1997), 1079–1100 | DOI | MR | Zbl

[14] Freidman A., Variational principles and free-boundary problems, John Wiley Sons Inc., New York, 1982 | MR

[15] Giga Y., Takahashi S., “On global weak solutions of the nonstationary two-phase Stokes flow”, SIAM J. Math. Anal., 25 (1994), 876–893 | DOI | MR | Zbl

[16] Golfier F., Zarcone C., Bazin B., Lenormand R., Lasseux D., Quintard M., “On the ability of a Darcy-scale model to capture wormhole formation during the dissolution of a porous medium”, J. Fluid Mech., 457 (2002), 213–254 | DOI | Zbl

[17] Kalia N., Balakotaiah V., “Effect of medium heterogeneities on reactive dissolution of carbonates”, Chem. Eng. Sci., 64 (2009), 376–390 | DOI

[18] Kasahara K., Earthquake mechanics, Cambridge University Press, Cambridge, 1981

[19] Kenneth W. W., Raymond E. D., Larry M. P., Stanley G. G., Chemistry, Brooks, Belmont, 2014

[20] Lukkassen D., Nguetseng G., Wall P., “Two-scale convergence”, Int. J. Pure Appl. Math., 2 (2002), 35–86 | MR | Zbl

[21] Malvern L. E., Introduction to Mechanics of a Continuum Medium, Prentice-Hall Inc., Englewood Cliffs, 1969

[22] Meirmanov A., The Stefan problem, Walter de Gruyter, Berlin–New York, 1992 | MR | Zbl

[23] Meirmanov A., “The Muskat problem for a viscoelastic filtration”, Interfaces Free Bound., 13 (2011), 463–484 | DOI | MR | Zbl

[24] Meirmanov A. M., Mathematical models for poroelastic flows, Atlantis Press, Paris, 2013 | MR

[25] Meirmanov A., Galtsev O., “Displacement of oil by water in a single elastic capillary”, Boundary Value Problems, 2017 (2017), 1–26 | DOI | MR

[26] Meirmanov A., Galtsev O., “Dynamics of cracks in rocks”, Int. J. Evol. Equ., 10 (2017), 214–227

[27] Meirmanov A., Zimin R., Shiyapov K., “The Muskat problem at the microscopic level for a single capillary”, Bound. Value Probl., 71 (2015), 1–8 | MR

[28] Monakhov V. N., Boundary-value problems with free boundaries for elliptic systems of equations, AMS, Providence, 1983 | MR | Zbl

[29] Nguetseng G., “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20 (1989), 608–623 | DOI | MR | Zbl

[30] Nguetseng G., “Asymptotic analysis for a stiff variational problem arising in mechanics”, SIAM J. Math. Anal., 21 (1990), 1394–1414 | DOI | MR | Zbl

[31] Nouri A., Poupaud F., “An existence theorem for the multifluid Navier–Stokes problem”, J. Differ. Equ., 13 (1995), 463–484 | MR

[32] Panga M. K. R., Ziauddin M., Balakotaiah V., “Two-scale continuum model for simulation of wormholes incarbonate acidization”, A.I.Ch.E. Journal, 51 (2005), 3231–3248 | DOI

[33] Sanchez-Palencia E., Non-homogeneous media and vibration theory, Springer, Berlin, 1980 | MR | Zbl

[34] Solonnikov V. A., Ladyzhenskaya O. A., “On unique solvability of an initial-boundary value problem for viscous nonhomogeneous fluids”, J. Soviet Math., 9 (1978), 697–749 | DOI | MR | Zbl

[35] Solonnikov V. A., Padula M., “On the local solvability of free boundary problem for the Navier–Stokes equations”, J. Math. Sci., 170:4 (2010), 522–553 | DOI | MR | Zbl

[36] Solonnikov V. A., Tani A., “Free boundary problem for the Navier–Stokes equations for a compressible fluid with a surface tension”, J. Soviet Math., 62 (1992), 2814–2818 | DOI | MR | Zbl

[37] Whitham G. B., Linear and nonlinear waves, Willey, New York, 1999 | MR | Zbl