Gårding cones and Bellman equations in the theory of Hessian operators and equations
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 4, pp. 615-626
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this work, we continue investigation of algebraic properties of Gårding cones in the space of symmetric matrices. Based on this theory, we propose a new approach to study of fully nonlinear differential operators and second-order partial differential equations. We prove new-type comparison theorems for evolution Hessian operators and establish a relation between Hessian and Bellman equations.
@article{CMFD_2017_63_4_a5,
     author = {N. M. Ivochkina and N. V. Filimonenkova},
     title = {G\r{a}rding cones and {Bellman} equations in the theory of {Hessian} operators and equations},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {615--626},
     year = {2017},
     volume = {63},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a5/}
}
TY  - JOUR
AU  - N. M. Ivochkina
AU  - N. V. Filimonenkova
TI  - Gårding cones and Bellman equations in the theory of Hessian operators and equations
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2017
SP  - 615
EP  - 626
VL  - 63
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a5/
LA  - ru
ID  - CMFD_2017_63_4_a5
ER  - 
%0 Journal Article
%A N. M. Ivochkina
%A N. V. Filimonenkova
%T Gårding cones and Bellman equations in the theory of Hessian operators and equations
%J Contemporary Mathematics. Fundamental Directions
%D 2017
%P 615-626
%V 63
%N 4
%U http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a5/
%G ru
%F CMFD_2017_63_4_a5
N. M. Ivochkina; N. V. Filimonenkova. Gårding cones and Bellman equations in the theory of Hessian operators and equations. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 4, pp. 615-626. http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a5/

[1] N. M. Ivochkina, “Description of stability cones generated by differential operators of the Monge–Ampère type”, Mat. sb. [Math. Digest], 122(164):2 (1983), 265–275 (in Russian) | MR | Zbl

[2] N. M. Ivochkina, “Solution of the Dirichlet problem for some equations of the Monge–Ampère type”, Mat. sb. [Math. Digest], 128(170):3 (1985), 403–415 (in Russian) | MR | Zbl

[3] N. M. Ivochkina, “From Gårding's cones to $p$-convex hypersurfaces”, Sovrem. mat. Fundam. napravl. [Contemp. Math. Fundam. Directions], 45, 2012, 94–104 (in Russian) | MR

[4] N. M. Ivochkina, S. I. Prokof'eva, G. V. Yakunina, “Gårding'scones in contemporary theory of fully nonlinear second-order differential equations”, Problemy mat. analiza [Probl. Math. Anal.], 2012, 63–80 (in Russian) | MR | Zbl

[5] N. M. Ivochkina, N. V. Filimonenkova, “On new structures in the theory of fully nonlinear equations”, Sovrem. mat. Fundam. napravl. [Contemp. Math. Fundam. Directions], 58, 2015, 82–95 (in Russian) | MR

[6] N. V. Krylov, “Boundedly nonhomogeneous elliptic and parabolic equations in a domain”, Izv. AN SSSR. Ser. mat. [Bull. Acad. Sci. USSR. Ser. Math.], 47:1 (1983), 75–108 (in Russian) | MR | Zbl

[7] N. V. Krylov, Nonlinear Second-Order Elliptic and Parabolic Equations, Nauka, Moscow, 1985 (in Russian) | MR

[8] N. V. Krylov, “On the first boundary-value problem for nonlinear degenerating elliptic equations”, Izv. AN SSSR. Ser. mat. [Bull. Acad. Sci. USSR. Ser. Math.], 51:2 (1987), 242–269 (in Russian) | MR | Zbl

[9] A. V. Pogorelov, Multidimensional Minkowski Problem, Nauka, Moscow, 1975 (in Russian) | MR

[10] M. V. Safonov, “Harnack's inequality for elliptic equations and the Hölder property of their solutions”, Zap. nauch. sem. LOMI [Notes Sci. Semin. Leningrad Dept. Math. Inst. Acad. Sci.], 96, 1980, 272–287 (in Russian) | MR | Zbl

[11] M. V. Safonov, “On smoothness of solutions of elliptic Bellman equations near the boundary”, Zap. nauch. sem. LOMI [Notes Sci. Semin. Leningrad Dept. Math. Inst. Acad. Sci.], 147, 1985, 150–154 (in Russian) | MR | Zbl

[12] N. V. Filimonenkova, P. A. Bakusov, “Hyperbolic polynomials and Gårding's cones]”, Mat. prosveshch. Tret'ya ser. [Math. Educ. Third Ser.], 20, 2016, 143–166 (in Russian)

[13] Caffarelli L., Nirenberg L., Spruck J., “The Dirichlet problem for nonlinear second order elliptic equations, III. Functions of the eigenvalues of the Hessian”, Acta Math., 155 (1985), 261–301 | DOI | MR | Zbl

[14] Evans L. C., “Classical solutions of fully nonlinear convex second order elliptic equations”, Commun. Pure Appl. Math., 25 (1982), 333–363 | DOI | MR

[15] Gårding L., “An inequality for hyperbolic polynomials”, J. Math. Mech., 8:2 (1959), 957–965 | MR

[16] Ivochkina N. M., “On classic solvability of the $m$-Hessian evolution equation”, Am. Math. Soc. Transl., 229 (2010), 119–129 | MR | Zbl

[17] Ivochkina N. M., Filimonenkova N. V., “On the backgrounds of the theory of $m$-Hessian equations”, Commun. Pure Appl. Anal., 12:4 (2013), 1687–1703 | DOI | MR | Zbl

[18] Ivochkina N. M., Filimonenkova N. V., “On algebraic and geometric conditions in the theory of Hessian equations”, J. Fixed Point Theory Appl., 16:1 (2015), 11–25 | MR

[19] Ivochkina N. M., Filimonenkova N. V., “Attractors of $m$-Hessian evolutions”, J. Math. Sci. (N.Y.), 207:2 (2015), 226–235 | DOI | MR | Zbl

[20] Krylov N. V., “On general notion of fully nonlinear second order elliptic equation”, Trans. Am. Math. Soc., 347:3 (1995), 857–895 | DOI | MR | Zbl

[21] Lin M., Trudinger N. S., “On some inequalities for elementary symmetric functions”, Bull. Aust. Math. Soc., 50 (1994), 317–326 | DOI | MR | Zbl

[22] Nazarov A. I., Uraltseva N. N., “Convex-monotone hulls and an estimate of the maximum of the solution of a parabolic equation”, J. Soviet Math., 37 (1987), 851–859 | DOI | MR | Zbl

[23] Trudinger N. S., “The Dirichlet problem for the prescribed curvature equations”, Arch. Ration. Mech. Anal., 111 (1990), 153–179 | DOI | MR | Zbl

[24] Trudinger N. S., “On the Dirichlet problem for Hessian equations”, Acta Math., 175 (1995), 151–164 | DOI | MR | Zbl

[25] Urbas Jh. I., “Nonlinear oblique boundary value problems for Hessian equations in two dimensions”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 12 (1995), 507–575 | DOI | MR | Zbl