G\aa rding cones and Bellman equations in the theory of Hessian operators and equations
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 4, pp. 615-626.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we continue investigation of algebraic properties of Gårding cones in the space of symmetric matrices. Based on this theory, we propose a new approach to study of fully nonlinear differential operators and second-order partial differential equations. We prove new-type comparison theorems for evolution Hessian operators and establish a relation between Hessian and Bellman equations.
@article{CMFD_2017_63_4_a5,
     author = {N. M. Ivochkina and N. V. Filimonenkova},
     title = {G\aa rding cones and {Bellman} equations in the theory of {Hessian} operators and equations},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {615--626},
     publisher = {mathdoc},
     volume = {63},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a5/}
}
TY  - JOUR
AU  - N. M. Ivochkina
AU  - N. V. Filimonenkova
TI  - G\aa rding cones and Bellman equations in the theory of Hessian operators and equations
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2017
SP  - 615
EP  - 626
VL  - 63
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a5/
LA  - ru
ID  - CMFD_2017_63_4_a5
ER  - 
%0 Journal Article
%A N. M. Ivochkina
%A N. V. Filimonenkova
%T G\aa rding cones and Bellman equations in the theory of Hessian operators and equations
%J Contemporary Mathematics. Fundamental Directions
%D 2017
%P 615-626
%V 63
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a5/
%G ru
%F CMFD_2017_63_4_a5
N. M. Ivochkina; N. V. Filimonenkova. G\aa rding cones and Bellman equations in the theory of Hessian operators and equations. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 4, pp. 615-626. http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a5/

[1] N. M. Ivochkina, “Description of stability cones generated by differential operators of the Monge–Ampère type”, Mat. sb. [Math. Digest], 122(164):2 (1983), 265–275 (in Russian) | MR | Zbl

[2] N. M. Ivochkina, “Solution of the Dirichlet problem for some equations of the Monge–Ampère type”, Mat. sb. [Math. Digest], 128(170):3 (1985), 403–415 (in Russian) | MR | Zbl

[3] N. M. Ivochkina, “From Gårding's cones to $p$-convex hypersurfaces”, Sovrem. mat. Fundam. napravl. [Contemp. Math. Fundam. Directions], 45, 2012, 94–104 (in Russian) | MR

[4] N. M. Ivochkina, S. I. Prokof'eva, G. V. Yakunina, “Gårding'scones in contemporary theory of fully nonlinear second-order differential equations”, Problemy mat. analiza [Probl. Math. Anal.], 2012, 63–80 (in Russian) | MR | Zbl

[5] N. M. Ivochkina, N. V. Filimonenkova, “On new structures in the theory of fully nonlinear equations”, Sovrem. mat. Fundam. napravl. [Contemp. Math. Fundam. Directions], 58, 2015, 82–95 (in Russian) | MR

[6] N. V. Krylov, “Boundedly nonhomogeneous elliptic and parabolic equations in a domain”, Izv. AN SSSR. Ser. mat. [Bull. Acad. Sci. USSR. Ser. Math.], 47:1 (1983), 75–108 (in Russian) | MR | Zbl

[7] N. V. Krylov, Nonlinear Second-Order Elliptic and Parabolic Equations, Nauka, Moscow, 1985 (in Russian) | MR

[8] N. V. Krylov, “On the first boundary-value problem for nonlinear degenerating elliptic equations”, Izv. AN SSSR. Ser. mat. [Bull. Acad. Sci. USSR. Ser. Math.], 51:2 (1987), 242–269 (in Russian) | MR | Zbl

[9] A. V. Pogorelov, Multidimensional Minkowski Problem, Nauka, Moscow, 1975 (in Russian) | MR

[10] M. V. Safonov, “Harnack's inequality for elliptic equations and the Hölder property of their solutions”, Zap. nauch. sem. LOMI [Notes Sci. Semin. Leningrad Dept. Math. Inst. Acad. Sci.], 96, 1980, 272–287 (in Russian) | MR | Zbl

[11] M. V. Safonov, “On smoothness of solutions of elliptic Bellman equations near the boundary”, Zap. nauch. sem. LOMI [Notes Sci. Semin. Leningrad Dept. Math. Inst. Acad. Sci.], 147, 1985, 150–154 (in Russian) | MR | Zbl

[12] N. V. Filimonenkova, P. A. Bakusov, “Hyperbolic polynomials and Gårding's cones]”, Mat. prosveshch. Tret'ya ser. [Math. Educ. Third Ser.], 20, 2016, 143–166 (in Russian)

[13] Caffarelli L., Nirenberg L., Spruck J., “The Dirichlet problem for nonlinear second order elliptic equations, III. Functions of the eigenvalues of the Hessian”, Acta Math., 155 (1985), 261–301 | DOI | MR | Zbl

[14] Evans L. C., “Classical solutions of fully nonlinear convex second order elliptic equations”, Commun. Pure Appl. Math., 25 (1982), 333–363 | DOI | MR

[15] Gårding L., “An inequality for hyperbolic polynomials”, J. Math. Mech., 8:2 (1959), 957–965 | MR

[16] Ivochkina N. M., “On classic solvability of the $m$-Hessian evolution equation”, Am. Math. Soc. Transl., 229 (2010), 119–129 | MR | Zbl

[17] Ivochkina N. M., Filimonenkova N. V., “On the backgrounds of the theory of $m$-Hessian equations”, Commun. Pure Appl. Anal., 12:4 (2013), 1687–1703 | DOI | MR | Zbl

[18] Ivochkina N. M., Filimonenkova N. V., “On algebraic and geometric conditions in the theory of Hessian equations”, J. Fixed Point Theory Appl., 16:1 (2015), 11–25 | MR

[19] Ivochkina N. M., Filimonenkova N. V., “Attractors of $m$-Hessian evolutions”, J. Math. Sci. (N.Y.), 207:2 (2015), 226–235 | DOI | MR | Zbl

[20] Krylov N. V., “On general notion of fully nonlinear second order elliptic equation”, Trans. Am. Math. Soc., 347:3 (1995), 857–895 | DOI | MR | Zbl

[21] Lin M., Trudinger N. S., “On some inequalities for elementary symmetric functions”, Bull. Aust. Math. Soc., 50 (1994), 317–326 | DOI | MR | Zbl

[22] Nazarov A. I., Uraltseva N. N., “Convex-monotone hulls and an estimate of the maximum of the solution of a parabolic equation”, J. Soviet Math., 37 (1987), 851–859 | DOI | MR | Zbl

[23] Trudinger N. S., “The Dirichlet problem for the prescribed curvature equations”, Arch. Ration. Mech. Anal., 111 (1990), 153–179 | DOI | MR | Zbl

[24] Trudinger N. S., “On the Dirichlet problem for Hessian equations”, Acta Math., 175 (1995), 151–164 | DOI | MR | Zbl

[25] Urbas Jh. I., “Nonlinear oblique boundary value problems for Hessian equations in two dimensions”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 12 (1995), 507–575 | DOI | MR | Zbl