G\aa rding cones and Bellman equations in the theory of Hessian operators and equations
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 4, pp. 615-626

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we continue investigation of algebraic properties of Gårding cones in the space of symmetric matrices. Based on this theory, we propose a new approach to study of fully nonlinear differential operators and second-order partial differential equations. We prove new-type comparison theorems for evolution Hessian operators and establish a relation between Hessian and Bellman equations.
@article{CMFD_2017_63_4_a5,
     author = {N. M. Ivochkina and N. V. Filimonenkova},
     title = {G\aa rding cones and {Bellman} equations in the theory of {Hessian} operators and equations},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {615--626},
     publisher = {mathdoc},
     volume = {63},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a5/}
}
TY  - JOUR
AU  - N. M. Ivochkina
AU  - N. V. Filimonenkova
TI  - G\aa rding cones and Bellman equations in the theory of Hessian operators and equations
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2017
SP  - 615
EP  - 626
VL  - 63
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a5/
LA  - ru
ID  - CMFD_2017_63_4_a5
ER  - 
%0 Journal Article
%A N. M. Ivochkina
%A N. V. Filimonenkova
%T G\aa rding cones and Bellman equations in the theory of Hessian operators and equations
%J Contemporary Mathematics. Fundamental Directions
%D 2017
%P 615-626
%V 63
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a5/
%G ru
%F CMFD_2017_63_4_a5
N. M. Ivochkina; N. V. Filimonenkova. G\aa rding cones and Bellman equations in the theory of Hessian operators and equations. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 4, pp. 615-626. http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a5/