G\aa rding cones and Bellman equations in the theory of Hessian operators and equations
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 4, pp. 615-626
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work, we continue investigation of algebraic properties of Gårding cones in the space of symmetric matrices. Based on this theory, we propose a new approach to study of fully nonlinear differential operators and second-order partial differential equations. We prove new-type comparison theorems for evolution Hessian operators and establish a relation between Hessian and Bellman equations.
@article{CMFD_2017_63_4_a5,
author = {N. M. Ivochkina and N. V. Filimonenkova},
title = {G\aa rding cones and {Bellman} equations in the theory of {Hessian} operators and equations},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {615--626},
publisher = {mathdoc},
volume = {63},
number = {4},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a5/}
}
TY - JOUR AU - N. M. Ivochkina AU - N. V. Filimonenkova TI - G\aa rding cones and Bellman equations in the theory of Hessian operators and equations JO - Contemporary Mathematics. Fundamental Directions PY - 2017 SP - 615 EP - 626 VL - 63 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a5/ LA - ru ID - CMFD_2017_63_4_a5 ER -
%0 Journal Article %A N. M. Ivochkina %A N. V. Filimonenkova %T G\aa rding cones and Bellman equations in the theory of Hessian operators and equations %J Contemporary Mathematics. Fundamental Directions %D 2017 %P 615-626 %V 63 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a5/ %G ru %F CMFD_2017_63_4_a5
N. M. Ivochkina; N. V. Filimonenkova. G\aa rding cones and Bellman equations in the theory of Hessian operators and equations. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 4, pp. 615-626. http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a5/