Differential equation in a~Banach space multiplicatively perturbed by random noise
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 4, pp. 599-614
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problem of finding the moment functions of the solution of the Cauchy problem for a first-order linear nonhomogeneous differential equation with random coefficients in a Banach space. The problem is reduced to the initial problem for a nonrandom differential equation with ordinary and variational derivatives. We obtain explicit formula for the mathematical expectation and the second-order mixed moment functions for the solution of the equation.
@article{CMFD_2017_63_4_a4,
author = {V. G. Zadorozhniy and M. A. Konovalova},
title = {Differential equation in {a~Banach} space multiplicatively perturbed by random noise},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {599--614},
publisher = {mathdoc},
volume = {63},
number = {4},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a4/}
}
TY - JOUR AU - V. G. Zadorozhniy AU - M. A. Konovalova TI - Differential equation in a~Banach space multiplicatively perturbed by random noise JO - Contemporary Mathematics. Fundamental Directions PY - 2017 SP - 599 EP - 614 VL - 63 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a4/ LA - ru ID - CMFD_2017_63_4_a4 ER -
%0 Journal Article %A V. G. Zadorozhniy %A M. A. Konovalova %T Differential equation in a~Banach space multiplicatively perturbed by random noise %J Contemporary Mathematics. Fundamental Directions %D 2017 %P 599-614 %V 63 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a4/ %G ru %F CMFD_2017_63_4_a4
V. G. Zadorozhniy; M. A. Konovalova. Differential equation in a~Banach space multiplicatively perturbed by random noise. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 4, pp. 599-614. http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a4/