On the stabilization rate of solutions of the Cauchy problem for nondivergent parabolic equations with growing lower-order term
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 4, pp. 586-598.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the Cauchy problem \begin{equation*} \begin{gathered} L_1u\equiv Lu+(b,\nabla u)+cu-u_t=0,\quad(x,t)\in D,\\ u(x,0)=u_0(x),\quad x\in\mathbb R^N, \end{gathered} \end{equation*} for nondivergent parabolic equation with growing lower-order term in the half-space $\overline D=\mathbb R^N\times[0,\infty)$, $N\geqslant3$, we prove sufficient conditions for exponential stabilization rate of solution as $t\to+\infty$ uniformly with respect to $x$ on any compact $K$ in $\mathbb R^N$ with any bounded and continuous in $\mathbb R^N$ initial function $u_0(x)$.
@article{CMFD_2017_63_4_a3,
     author = {V. N. Denisov},
     title = {On the stabilization rate of solutions of the {Cauchy} problem for nondivergent parabolic equations with growing lower-order term},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {586--598},
     publisher = {mathdoc},
     volume = {63},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a3/}
}
TY  - JOUR
AU  - V. N. Denisov
TI  - On the stabilization rate of solutions of the Cauchy problem for nondivergent parabolic equations with growing lower-order term
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2017
SP  - 586
EP  - 598
VL  - 63
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a3/
LA  - ru
ID  - CMFD_2017_63_4_a3
ER  - 
%0 Journal Article
%A V. N. Denisov
%T On the stabilization rate of solutions of the Cauchy problem for nondivergent parabolic equations with growing lower-order term
%J Contemporary Mathematics. Fundamental Directions
%D 2017
%P 586-598
%V 63
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a3/
%G ru
%F CMFD_2017_63_4_a3
V. N. Denisov. On the stabilization rate of solutions of the Cauchy problem for nondivergent parabolic equations with growing lower-order term. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 4, pp. 586-598. http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a3/

[1] E. Ince, Ordinary Differential Equations, Faktorial Press, M., 2005, Russian translation

[2] V. I. Bogachev, N. V. Krylov, M. Rekner, S. V. Shaposhnikov, Fokker–Planck–Kolmogorov Equations, In-t komp. issl., Moscow, 2013 (in Russian)

[3] G. Watson, A Treatise on the Theory of Bessel Functions, v. 1, IL, M., 1949, Russian translation

[4] A. K. Gushchin, “Some estimates of solutions of boundary-value problems for the thermal conductivity equation in unbounded domain”, Tr. MIAN [Proc. Math. Inst. Russ. Acad. Sci.], 91, 1967, 5–18 (in Russian) | MR | Zbl

[5] A. K. Gushchin, “On stabilization of solution of a parabolic equation”, Tr. MIAN [Proc. Math. Inst. Russ. Acad. Sci.], 103, 1968, 51–57 (in Russian) | MR | Zbl

[6] A. K. Gushchin, “On the stabilization rate of solution of boundary-value problem for a parabolic equation”, Sib. mat. zh. [Siberian Math. J.], 10:1 (1969), 43–57 (in Russian)

[7] V. N. Denisov, “On stabilization of solution of the Cauchy problem for a parabolic equation with lower-order coefficient”, Diff. uravn. [Differ. Equ.], 39:4 (2003), 506–515 (in Russian) | MR | Zbl

[8] V. N. Denisov, “On behavior of solutions of parabolic equations for large values of time”, Usp. mat. nauk [Progr. Math. Sci.], 60:4 (2005), 145–212 (in Russian) | DOI | MR | Zbl

[9] V. N. Denisov, “Sufficient conditions for stabilization of solution of the Cauchy problem for nondivergent parabolic equations with lower-order coefficients”, Sovrem. mat. Fundam. napravl. [Contemp. Math. Fundam. Directions], 36, 2010, 61–71 (in Russian) | MR | Zbl

[10] V. N. Denisov, “Stabilization of solution of the Cauchy problem for a nondivergent parabolic equation”, Sovrem. mat. i ee prilozh. [Contemp. Math. Appl.], 78 (2012), 17–49 (in Russian)

[11] V. N. Denisov, “Stabilization of solutions of Cauchy problems for divergence-free parabolic equations with decreasing minor coefficients”, Sovrem. mat. Fundam. napravl. [Contemp. Math. Fundam. Directions], 45, 2012, 62–74 (in Russian) | MR

[12] V. N. Denisov, “On the stabilization rate of solutions of the Cauchy problem for a parabolic equation with lower-order terms”, Sovrem. mat. Fundam. napravl. [Contemp. Math. Fundam. Directions], 59, 2016, 53–73 (in Russian)

[13] V. N. Denisov, “On behavior of solutions of parabolic nondivergent equations with increasing higher-order coefficients at large values of time”, Sovrem. mat. Fundam. napravl. [Contemp. Math. Fundam. Directions], 62, 2016, 72–84 (in Russian)

[14] V. N. Denisov, “On the stabilization rate of solutions of Cauchy problems with growing coefficient”, Abstr. Sci. Conf. “Lomonosovskie chteniya-2017” [Lomonosov Reading-2017], MSU, Moscow, 2017, 23 (in Russian)

[15] A. M. Il'in, A. S. Kalashnikov, O. A. Oleynik, “Second-order linear equations of parabolic type”, Tr. sem. im. I. G. Petrovskogo [Proc. Petrovskii Semin.], 17, 2001, 9–193 (in Russian)

[16] L. D. Kudryavtsev, Mathematical Analysis, v. 1, Vysshaya shkola, Moscow, 1970 (in Russian)

[17] G. Sansone, Ordinary Differential Equations, v. 1, IL, Moscow, 1953, Russian translation

[18] M. V. Fedoryuk, Ordinary Differential Equations, Nauka, Moscow, 1985 (in Russian) | MR

[19] A. Friedman, Partial Differential Equations of Parabolic Type, Mir, Moscow, 1968, Russian translation

[20] Marić V., Regular Variation and Differential Equations, Springer, 2000 | MR | Zbl

[21] Marić V., Tomić M., “On Liouville–Green (WKB) approximation for second order linear differential equations”, Differ. Integral Equ., 1:3 (1988), 299–304 | MR | Zbl

[22] Meyers N., Serrin J., “The exterior Dirichlet problem for second order elliptic partial differential equations”, J. Math. Mech., 9:4 (1960), 513–538 | MR | Zbl