Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2017_63_4_a0, author = {H.-O. Walther}, title = {Maps which are continuously differentiable in the sense of {Michal} and {Bastiani} but not of {Fr\'echet}}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {543--556}, publisher = {mathdoc}, volume = {63}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a0/} }
TY - JOUR AU - H.-O. Walther TI - Maps which are continuously differentiable in the sense of Michal and Bastiani but not of Fr\'echet JO - Contemporary Mathematics. Fundamental Directions PY - 2017 SP - 543 EP - 556 VL - 63 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a0/ LA - ru ID - CMFD_2017_63_4_a0 ER -
%0 Journal Article %A H.-O. Walther %T Maps which are continuously differentiable in the sense of Michal and Bastiani but not of Fr\'echet %J Contemporary Mathematics. Fundamental Directions %D 2017 %P 543-556 %V 63 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a0/ %G ru %F CMFD_2017_63_4_a0
H.-O. Walther. Maps which are continuously differentiable in the sense of Michal and Bastiani but not of Fr\'echet. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 4, pp. 543-556. http://geodesic.mathdoc.fr/item/CMFD_2017_63_4_a0/
[1] Bastiani A., “Applications différentiables et varietés de dimension infinie”, J. Anal. Math., 13 (1964), 1–114 | DOI | MR | Zbl
[2] Diekmann O., van Gils S. A., Verduyn Lunel S. M., Walther H. O., Delay equations: functional-, complex- and nonlinear analysis, Springer, New York, 1995 | MR | Zbl
[3] Glöckner H., “Implicit functions from topological vector spaces to Banach spaces”, Israel J. Math., 155 (2006), 205–252 | DOI | MR | Zbl
[4] Glöckner H., Finite order differentiability properties, fixed points and implicit functions over valued fields, 2007, arXiv: math/0511218
[5] Hale J. K., Functional differential equations, Springer, New York, 1971 | MR | Zbl
[6] Hale J. K., Verduyn Lunel S. M., Introduction to functional differential equations, Springer, New York, 1993 | MR | Zbl
[7] Hamilton R. S., “The inverse function theorem of Nash and Moser”, Bull. Am. Math. Soc. (N.S.), 7 (1982), 65–222 | DOI | MR | Zbl
[8] Hartung F., Krisztin T., Walther H. O., Wu J., “Functional differential equations with state-dependent delays: theory and applications”, Handb. Differ. Equ., 3 (2006), 435–545 | MR
[9] Krisztin T., Walther H. O., “Smoothness issues in differential equations with state-dependent delay”, Rend. Istit. Mat. Univ. Trieste, 49 (2017), 95–112 | MR
[10] Michal A. D., “Differential calculus in linear topological spaces”, Proc. Natl. Acad. Sci. USA, 24 (1938), 340–342 | DOI | Zbl
[11] Szilasi J., Lovas R. L., “Some aspects of differential theories”, Handbook of global analysis, Elsevier, Amsterdam, 2007, 1071–1116 | MR
[12] Walther H. O., “The solution manifold and $C^1$-smoothness of solution operators for differential equations with state dependent delay”, J. Differ. Equ., 195 (2003), 46–65 | DOI | MR | Zbl
[13] Walther H. O., “Smoothness properties of semiflows for differential equations with state dependent delay”, J. Math. Sci. (N.Y.), 124 (2004), 5193–5207 | DOI | MR | Zbl
[14] Walther H. O., “Differential equations with locally bounded delay”, J. Differ. Equ., 252 (2012), 3001–3039 | DOI | MR | Zbl
[15] Walther H. O., “Evolution systems for differential equations with variable time lags”, J. Math. Sci. (N.Y.), 202 (2014), 911–933 | DOI | MR | Zbl
[16] Walther H. O., “Semiflows for differential equations with locally bounded delay on solution manifolds in the space $C^1((-\infty,0],\mathbb R^n)$”, Topol. Methods Nonlinear Anal., 48 (2016), 507–537 | MR | Zbl
[17] Walther H. O., “Local invariant manifolds for delay differential equations with state space in $C^1((-\infty,0],\mathbb R^n)$”, Electron. J. Qual. Theory Differ. Equ., 85 (2016), 1–29 | DOI | MR
[18] Walther H. O., Fréchet differentiability in Fréchet spaces, and differential equations with unbounded variable delay, Preprint, 2016