@article{CMFD_2017_63_3_a5,
author = {L. M. Kozhevnikova},
title = {On entropy solutions of anisotropic elliptic equations with variable nonlinearity indices},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {475--493},
year = {2017},
volume = {63},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a5/}
}
TY - JOUR AU - L. M. Kozhevnikova TI - On entropy solutions of anisotropic elliptic equations with variable nonlinearity indices JO - Contemporary Mathematics. Fundamental Directions PY - 2017 SP - 475 EP - 493 VL - 63 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a5/ LA - ru ID - CMFD_2017_63_3_a5 ER -
L. M. Kozhevnikova. On entropy solutions of anisotropic elliptic equations with variable nonlinearity indices. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 3, pp. 475-493. http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a5/
[1] V. V. Zhikov, “On variational problems and nonlinear elliptic equations with nonstandard growth conditions”, Probl. Math. Anal., 54, 2011, 23–112 (in Russian)
[2] A. A. Kovalevskiy, “A priori properties of solutions of nonlinear equations with degenerate coercitivity and $L^1$-data”, Contemp. Math. Fundam. Directions, 16, 2006, 47–67 (in Russian) | MR
[3] A. A. Kovalevskiy, “On convergence of functions from Sobolev space satisfying special integral estimates”, Ukr. Math. J., 58:2 (2006), 168–183 (in Russian) | MR
[4] L. M. Kozhevnikova, “On entropy solution of an elliptic problem in anisotropic Sobolev–Orlich spaces”, J. Comput. Math. Math. Phys., 57:3 (2017), 429–447 (in Russian) | DOI
[5] L. M. Kozhevnikova, “Existence of entropy solutions of an elliptic problem in anisotropic Sobolev–Orlich spaces”, Totals Sci. Tech. Ser. Contemp. Math. Appl., 139, 2017, 15–38 (in Russian)
[6] L. M. Kozhevnikova, A. Sh. Kamaletdinov, “Existence of solutions of anisotropic elliptic equations with variable nonlinearity index in unbounded domains”, Bull. Volgograd. State Univ. Ser. 1. Math. Phys., 2016, no. 5(36), 29–41 (in Russian)
[7] S. N. Kruzhkov, “First-order quasilinear equations with multiple independent variables”, Math. Digest, 81(123):2 (1970), 228–255 (in Russian) | MR | Zbl
[8] Aharouch L., Bennouna J., Touzani A., “Existence of renormalized solution of some elliptic problems in Orlicz spaces”, Rev. Mat. Complut., 22:1 (2009), 91–110 | DOI | MR
[9] Alvino A., Boccardo L., Ferone V., Orsina L., Trombetti G., “Existence results for nonlinear elliptic equations with degenerate coercivity”, Ann. Mat. Pura Appl. (4), 182:1 (2003), 53–79 | DOI | MR
[10] Azroul E., Hjiaj H., Touzani A., “Existence and regularity of entropy solutions for strongly nonlinear $p(x)$-elliptic equations”, Electron. J. Differ. Equ., 2013:68 (2013), 1–27 | MR
[11] Benboubker M. B., Azroul E., Barbara A., “Quasilinear elliptic problems with nonstandartd growths”, Electron. J. Differ. Equ., 2011:62 (2011), 1–16 | MR
[12] Benboubker M. B., Chrayteh H., El Moumni M., Hjiaj H., “Entropy and renormalized solutions for nonlinear elliptic problem involving variable exponent and measure data”, Acta Math. Sin. (Engl. Ser.), 31:1 (2015), 151–169 | DOI | MR
[13] Benboubker M. B., Hjiaj H., Ouaro S., “Entropy solutions to nonlinear elliptic anisotropic problem with variable exponent”, J. Appl. Anal. Comput., 4:3 (2014), 245–270 | MR
[14] Bendahmane M., Karlsen K., “Nonlinear anisotropic elliptic and parabolic equations in $\mathbb R^N$ with advection and lower order terms and locally integrable data”, Potential Anal., 22:3 (2005), 207–227 | DOI | MR
[15] Bendahmane M., Wittboldb P., “Renormalized solutions for nonlinear elliptic equation with variable exponents and $L^1$-data”, Nonlinear Anal., 70:2 (2009), 567–583 | DOI | MR
[16] Benilan Ph., Boccardo L., Gallouët Th., Gariepy R., Pierre M., Vazquez J. L., “An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 22:2 (1995), 241–273 | MR
[17] Benkirane A., Bennouna J., “Existence of entropy solutions for some elliptic problems involving derivatives of nonlinear terms in Orlicz spaces”, Abstr. Appl. Anal., 7:2 (2002), 85–102 | DOI | MR
[18] Bidaut-Veron M. F., “Removable singularities and existence for a quasilinear equation with absorption or source term and measure data”, Adv. Nonlinear Stud., 3 (2003), 25–63 | DOI | MR
[19] Boccardo L., Gallouët Th., “Nonlinear elliptic equations with right-hand side measures”, Commun. Part. Differ. Equ., 17:3–4 (1992), 641–655 | MR
[20] Boccardo L., Gallouët Th., Marcellini P., “Anisotropic equations in $L^1$”, Differ. Integral Equ., 9:1 (1996), 209–212 | MR
[21] Boccardo L., Gallouët T., Vazquez J. L., “Nonlinear elliptic equations in $R^N$ without growth restrictions on the data”, J. Differ. Equ., 105:2 (1993), 334–363 | DOI | MR
[22] Bonzi B. K., Ouaro S., “Entropy solutions for a doubly nonlinear elliptic problem with variable exponent”, J. Math. Anal. Appl., 370 (2010), 392–405 | DOI | MR
[23] Brezis H., “Semilinear equations in $\mathbb R^N$ without condition at infinity”, Appl. Math. Optim., 12:3 (1984), 271–282 | DOI | MR
[24] Diening L., Harjulehto P., Hästö P., Ruzicka M., Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Berlin–Heidelberg, 2011 | MR
[25] El Hachimi A., Jamea A., “Uniqueness result of entropy solution to nonlinear neumann problems with variable exponent and $L^1$-data”, J. Nonlinear Evol. Equ. Appl., 2017:2 (2017), 13–25 | MR
[26] Fan X., “Anisotropic variable exponent Sobolev spaces and $p(x)$-Laplacian equations”, Complex Var. Elliptic Equ., 56:7–9 (2011), 623–642 | DOI | MR
[27] Gwiazda P., Wittbold P., Wróblewska A., Zimmermann A., “Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces”, J. Differ. Equ., 253 (2012), 635–666 | DOI | MR
[28] Halsey T. C., “Electrorheological fluids”, Science, 258:5083 (1992), 761–766 | DOI
[29] Ouaro S., “Well-Posedness Results for Anisotropic Nonlinear Elliptic Equations with Variable Exponent and $L^1$-Data”, Cubo, 12:1 (2010), 133–148 | DOI | MR
[30] Sancho'n M., Urbano J. M., “Entropy solutions for the $p(x)$-laplace equation”, Trans. Am. Math. Soc., 361:12 (2009), 6387–6405 | DOI | MR