Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2017_63_3_a5, author = {L. M. Kozhevnikova}, title = {On entropy solutions of anisotropic elliptic equations with variable nonlinearity indices}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {475--493}, publisher = {mathdoc}, volume = {63}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a5/} }
TY - JOUR AU - L. M. Kozhevnikova TI - On entropy solutions of anisotropic elliptic equations with variable nonlinearity indices JO - Contemporary Mathematics. Fundamental Directions PY - 2017 SP - 475 EP - 493 VL - 63 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a5/ LA - ru ID - CMFD_2017_63_3_a5 ER -
%0 Journal Article %A L. M. Kozhevnikova %T On entropy solutions of anisotropic elliptic equations with variable nonlinearity indices %J Contemporary Mathematics. Fundamental Directions %D 2017 %P 475-493 %V 63 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a5/ %G ru %F CMFD_2017_63_3_a5
L. M. Kozhevnikova. On entropy solutions of anisotropic elliptic equations with variable nonlinearity indices. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 3, pp. 475-493. http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a5/
[1] V. V. Zhikov, “On variational problems and nonlinear elliptic equations with nonstandard growth conditions”, Probl. Math. Anal., 54, 2011, 23–112 (in Russian)
[2] A. A. Kovalevskiy, “A priori properties of solutions of nonlinear equations with degenerate coercitivity and $L^1$-data”, Contemp. Math. Fundam. Directions, 16, 2006, 47–67 (in Russian) | MR
[3] A. A. Kovalevskiy, “On convergence of functions from Sobolev space satisfying special integral estimates”, Ukr. Math. J., 58:2 (2006), 168–183 (in Russian) | MR
[4] L. M. Kozhevnikova, “On entropy solution of an elliptic problem in anisotropic Sobolev–Orlich spaces”, J. Comput. Math. Math. Phys., 57:3 (2017), 429–447 (in Russian) | DOI
[5] L. M. Kozhevnikova, “Existence of entropy solutions of an elliptic problem in anisotropic Sobolev–Orlich spaces”, Totals Sci. Tech. Ser. Contemp. Math. Appl., 139, 2017, 15–38 (in Russian)
[6] L. M. Kozhevnikova, A. Sh. Kamaletdinov, “Existence of solutions of anisotropic elliptic equations with variable nonlinearity index in unbounded domains”, Bull. Volgograd. State Univ. Ser. 1. Math. Phys., 2016, no. 5(36), 29–41 (in Russian)
[7] S. N. Kruzhkov, “First-order quasilinear equations with multiple independent variables”, Math. Digest, 81(123):2 (1970), 228–255 (in Russian) | MR | Zbl
[8] Aharouch L., Bennouna J., Touzani A., “Existence of renormalized solution of some elliptic problems in Orlicz spaces”, Rev. Mat. Complut., 22:1 (2009), 91–110 | DOI | MR
[9] Alvino A., Boccardo L., Ferone V., Orsina L., Trombetti G., “Existence results for nonlinear elliptic equations with degenerate coercivity”, Ann. Mat. Pura Appl. (4), 182:1 (2003), 53–79 | DOI | MR
[10] Azroul E., Hjiaj H., Touzani A., “Existence and regularity of entropy solutions for strongly nonlinear $p(x)$-elliptic equations”, Electron. J. Differ. Equ., 2013:68 (2013), 1–27 | MR
[11] Benboubker M. B., Azroul E., Barbara A., “Quasilinear elliptic problems with nonstandartd growths”, Electron. J. Differ. Equ., 2011:62 (2011), 1–16 | MR
[12] Benboubker M. B., Chrayteh H., El Moumni M., Hjiaj H., “Entropy and renormalized solutions for nonlinear elliptic problem involving variable exponent and measure data”, Acta Math. Sin. (Engl. Ser.), 31:1 (2015), 151–169 | DOI | MR
[13] Benboubker M. B., Hjiaj H., Ouaro S., “Entropy solutions to nonlinear elliptic anisotropic problem with variable exponent”, J. Appl. Anal. Comput., 4:3 (2014), 245–270 | MR
[14] Bendahmane M., Karlsen K., “Nonlinear anisotropic elliptic and parabolic equations in $\mathbb R^N$ with advection and lower order terms and locally integrable data”, Potential Anal., 22:3 (2005), 207–227 | DOI | MR
[15] Bendahmane M., Wittboldb P., “Renormalized solutions for nonlinear elliptic equation with variable exponents and $L^1$-data”, Nonlinear Anal., 70:2 (2009), 567–583 | DOI | MR
[16] Benilan Ph., Boccardo L., Gallouët Th., Gariepy R., Pierre M., Vazquez J. L., “An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 22:2 (1995), 241–273 | MR
[17] Benkirane A., Bennouna J., “Existence of entropy solutions for some elliptic problems involving derivatives of nonlinear terms in Orlicz spaces”, Abstr. Appl. Anal., 7:2 (2002), 85–102 | DOI | MR
[18] Bidaut-Veron M. F., “Removable singularities and existence for a quasilinear equation with absorption or source term and measure data”, Adv. Nonlinear Stud., 3 (2003), 25–63 | DOI | MR
[19] Boccardo L., Gallouët Th., “Nonlinear elliptic equations with right-hand side measures”, Commun. Part. Differ. Equ., 17:3–4 (1992), 641–655 | MR
[20] Boccardo L., Gallouët Th., Marcellini P., “Anisotropic equations in $L^1$”, Differ. Integral Equ., 9:1 (1996), 209–212 | MR
[21] Boccardo L., Gallouët T., Vazquez J. L., “Nonlinear elliptic equations in $R^N$ without growth restrictions on the data”, J. Differ. Equ., 105:2 (1993), 334–363 | DOI | MR
[22] Bonzi B. K., Ouaro S., “Entropy solutions for a doubly nonlinear elliptic problem with variable exponent”, J. Math. Anal. Appl., 370 (2010), 392–405 | DOI | MR
[23] Brezis H., “Semilinear equations in $\mathbb R^N$ without condition at infinity”, Appl. Math. Optim., 12:3 (1984), 271–282 | DOI | MR
[24] Diening L., Harjulehto P., Hästö P., Ruzicka M., Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Berlin–Heidelberg, 2011 | MR
[25] El Hachimi A., Jamea A., “Uniqueness result of entropy solution to nonlinear neumann problems with variable exponent and $L^1$-data”, J. Nonlinear Evol. Equ. Appl., 2017:2 (2017), 13–25 | MR
[26] Fan X., “Anisotropic variable exponent Sobolev spaces and $p(x)$-Laplacian equations”, Complex Var. Elliptic Equ., 56:7–9 (2011), 623–642 | DOI | MR
[27] Gwiazda P., Wittbold P., Wróblewska A., Zimmermann A., “Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces”, J. Differ. Equ., 253 (2012), 635–666 | DOI | MR
[28] Halsey T. C., “Electrorheological fluids”, Science, 258:5083 (1992), 761–766 | DOI
[29] Ouaro S., “Well-Posedness Results for Anisotropic Nonlinear Elliptic Equations with Variable Exponent and $L^1$-Data”, Cubo, 12:1 (2010), 133–148 | DOI | MR
[30] Sancho'n M., Urbano J. M., “Entropy solutions for the $p(x)$-laplace equation”, Trans. Am. Math. Soc., 361:12 (2009), 6387–6405 | DOI | MR