Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2017_63_3_a3, author = {V. Volpert and V. Vougalter}, title = {Method of monotone solutions for reaction-diffusion equations}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {437--454}, publisher = {mathdoc}, volume = {63}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a3/} }
TY - JOUR AU - V. Volpert AU - V. Vougalter TI - Method of monotone solutions for reaction-diffusion equations JO - Contemporary Mathematics. Fundamental Directions PY - 2017 SP - 437 EP - 454 VL - 63 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a3/ LA - ru ID - CMFD_2017_63_3_a3 ER -
V. Volpert; V. Vougalter. Method of monotone solutions for reaction-diffusion equations. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 3, pp. 437-454. http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a3/
[1] Borisovich Yu. G., Zvyagin V. G., Sapronov Yu. I., “Nonlinear Fredholm mappings and the Leray–Schauder theory”, Progr. Math. Sci., 32:4 (1977), 3–54 (in Russian) | MR | Zbl
[2] Vishik M. I., “On strongly elliptic systems of differential equations”, Math. Digest, 29(71)]:3 (1951), 615–676 (in Russian) | MR | Zbl
[3] Volevich L. R., “Solvability of boundary-value problems for general elliptic systems”, Math. Digest, 68(110):3 (1965), 373–416 (in Russian) | MR | Zbl
[4] Volpert A. I., Volpert V. A., “Application of the theory of rotation of vector fields to investigation of wave solutions of parabolic equations”, Proc. Moscow Math. Soc., 52, 1989, 58–109 (in Russian) | MR | Zbl
[5] Rabinovich V. S., “Pseudodifferential operators in unbounded domains, with conical structure at infinity”, Math. Digest, 80(122):1 (1969), 77–96 (in Russian) | MR | Zbl
[6] Rabinovich V. S., “Fredholm property of general boundary-value problems on noncompact manifolds and limiting operators”, Rep. Acad. Sci. USSR, 325:2 (1992), 237–241 (in Russian) | MR
[7] Agmon S., Douglis A., Nirenberg L., “Estimates near the boundary for solutions of elliptic partial diffrential equations satisfying general boundary conditions”, Comm. Pure Appl. Math., 12 (1959), 623–727 | DOI | MR
[8] Agmon S., Douglis A., Nirenberg L., “Estimates near the boundary for solutions of elliptic partial diffrential equations satisfying general boundary conditions II”, Commun. Pure Appl. Math., 17 (1964), 35–92 | DOI | MR
[9] Apreutesei N., Ducrot A., Volpert V., “Competition of species with intra-specific competition”, Math. Model. Nat. Phenom., 3:4 (2008), 1–27 | DOI | MR
[10] Apreutesei N., Ducrot A., Volpert V., “Travelling waves for integro-differential equations in population dynamics”, Discrete Contin. Dyn. Syst. Ser. B, 11:3 (2009), 541–561 | DOI | MR
[11] Apreutesei N., Tosenberger A., Volpert V., “Existence of reaction–diffusion waves with nonlinear boundary conditions”, Math. Model. Nat. Phenom., 8:4 (2013), 2–17 | DOI | MR
[12] Apreutesei N., Volpert V., “Properness and topological degree for nonlocal reaction-diffusion operators”, Abstr. Appl. Anal., 2011, ID 629692 | MR
[13] Apreutesei N., Volpert V., “Existence of travelling waves for a class of integro-differential equations from population dynamics”, Int. Electron. J. Pure Appl. Math., 5:2 (2012), 53–67 | MR
[14] Apreutesei N., Volpert V., “Reaction–diffusion waves with nonlinear boundary conditions”, Nonlinear Heterog. Medium., 8:2 (2013), 23–35 | DOI | MR
[15] Apreutesei N., Volpert V., “Travelling waves for reaction-diffusion problems with nonlinear boundary conditions. Application to a model of atherosclerosis”, Pure Appl. Funct. Anal. (to appear) | MR
[16] Benevieri P., Furi M., “A simple notion of orientability for Fredholm maps of index zero between Banach manifolds and degree theory”, Ann. Sci. Math. Québec, 22 (1998), 131–148 | MR
[17] Benevieri P., Furi M., “On the concept of orientability for Fredholm maps between real Banach manifolds”, Topol. Methods Nonlinear Anal., 16:2 (2000), 279–306 | DOI | MR
[18] Berestycki H., Larrouturou B., Lions P. L., “Multidimensional traveling wave solutions of a flame propagation model”, Arch. Ration. Mech. Anal., 111 (1990), 97–117 | DOI | MR
[19] Berestycki H., Nirenberg L., “Travelling fronts in cylinders”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9:5 (1992), 497–572 | DOI | MR
[20] Bessonov N., Reinberg N., Volpert V., “Mathematics of Darwin's diagram”, Math. Model. Nat. Phenom., 9:3 (2014), 5–25 | DOI | MR
[21] Bocharov G., Meyerhans A., Bessonov N., Trofimchuk S., Volpert V., “Spatiotemporal dynamics of virus infection spreading in tissues”, Plos ONE, 2016 | DOI
[22] Collet J. F., Volpert V., “Computation of the index of linear elliptic operators in unbounded cylinders”, J. Funct. Anal., 164 (1999), 34–59 | DOI | MR
[23] Dancer E. N., “Boundary value problems for ordinary differential equations on infinite intervals”, Proc. Lond. Math. Soc., 30:3 (1975), 76–94 | DOI | MR
[24] Demin I., Volpert V., “Existence of waves for a nonlocal reaction-diffusion equation”, Math. Model. Nat. Phenom., 5:5 (2010), 80–101 | DOI | MR
[25] Elworthy K. D., Tromba A. J., “Degree theory on Banach manifolds”, Nonlinear Functional Analysis, Amer. Math. Soc., Providence, 1970, 86–94 | DOI | MR
[26] Elworthy K. D., Tromba A. J., “Differential structures and Fredholm maps on Banach manifolds”, Global Analysis, Amer. Math. Soc., Providence, 1970, 45–94 | DOI | MR
[27] Eymard N., Volpert V., Vougalter V., “Existence of pulses for local and nonlocal reaction-diffusion equations”, J. Dynam. Differ. Equ., 29:3 (2017), 1145–1158 | DOI | MR
[28] Fenske C., “Analytische Theorie des Abbildungrades fur Abbildungen in Banachraumen”, Math. Nachr., 48 (1971), 279–290 | DOI | MR
[29] Fife P. C., McLeod J. B., “The approach to solutions of nonlinear diffusion equations to traveling front solutions”, Arch. Ration. Mech. Anal., 65 (1977), 335–361 | DOI | MR
[30] Fife P. C., McLeod J. B., “A phase plane discussion of convergence to travelling fronts for nonlinear diffusion”, Arch. Ration. Mech. Anal., 75 (1981), 281–314 | DOI | MR
[31] Fitzpatrick P. M., “The parity as an invariant for detecting bifurcaton of the zeroes of one parameter families of nonlinear Fredholm maps”, Lecture Notes in Math., 1537, 1993, 1–31 | DOI | MR
[32] Fitzpatrick P. M., Pejsachowicz J., “Parity and generalized multiplicity”, Trans. Am. Math. Soc. 1991, 326, 281–305 | DOI | MR
[33] Fitzpatrick P. M., Pejsachowicz J., “Orientation and the Leray–Schauder degree for fully nonlinear elliptic boundary value problems”, Mem. Am. Math. Soc., 101:483 (1993), 1–131 | MR
[34] Fitzpatrick P. M., Pejsachowicz J., Rabier P. J., “The degree of proper $C^2$ Fredholm mappings”, J. Reine Angew. Math., 427 (1992), 1–33 | MR
[35] Fitzpatrick P. M., Pejsachowicz J., Rabier P. J., “Orientability of Fredholm families and topological degree for orientable nonlinear Fredholm mappings”, J. Funct. Anal., 124 (1994), 1–39 | DOI | MR
[36] Galochkina T., Marion M., Volpert V., Initiation of reaction-diffusion waves of blood coagulation, to be published
[37] Gardner R. A., “Existence and stability of traveling wave solution of competition models: a degree theoretic approach”, J. Differ. Equ., 44 (1982), 343–364 | DOI | MR
[38] Isnard C. A., “Orientation and degree in infinite dimensions”, Notices Am. Math. Soc., 19 (1972), A-514
[39] Leray J., Schauder J., “Topologie et équations fonctionnelles”, Ann. Sci. Éc. Norm. Supér (3), 51 (1934), 45–78 | DOI | MR
[40] Marion M., Volpert V., “Existence of pulses for a monotone reaction-diffusion system”, Pure Appl. Funct. Anal., 1:1 (2016), 97–122 | MR
[41] Marion M., Volpert V., “Existence of pulses for the system of competition of species”, J. Dyn. Differ. Equ. (to appear)
[42] Miranda C., Equazioni alle Derivate Parziale di Tipo Elliptico, Springer-Verlag, Berlin, 1955 | MR
[43] Muravnik A., “On the half-plane Dirichlet problem for differential-difference elliptic equations with several nonlocal terms”, Math. Model. Nat. Phenom., 12:6 (2017), 130–143 | DOI | MR
[44] Onanov G. G., Skubachevskii A. L., “Nonlocal problems in the mechanics of three-layer shells”, Math. Model. Nat. Phenom., 12:6 (2017), 192–207 | DOI
[45] Rabier P. J., Stuart C. A., “Fredholm and properness properties of quasilinear elliptic operators on $R^N$”, Math. Nachr., 231 (2001), 29–168 | 3.0.CO;2-V class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[46] Rabinovich V., Roch S., Silbermann B., “Limit operators and their applications in operator theory”, Oper. Theory Adv. Appl., 150 (2004), 1–392 | MR
[47] Rossovskii L., “Elliptic functional differential equations with incommensurable contractions”, Math. Model. Nat. Phenom., 12:6 (2017), 226–239 | DOI | MR
[48] Skubachevskii A. L., “Nonlocal elliptic problems and multidimensional diffusion processes”, Russ. J. Math. Phys., 3:3 (1995), 327–360 | MR
[49] Skubachevskii A. L., Elliptic Functional Differential Equations and Applications, Birkhäuser, Basel, 1997 | MR
[50] Smale S., “An infinite dimensional version of Sard's theorem”, Am. J. Math., 87 (1965), 861–866 | DOI | MR
[51] Tasevich A., “Analysis of functional-differential equation with orthotropic contractions”, Math. Model. Nat. Phenom., 12:6 (2017), 240–248 | DOI
[52] Trofimchuk S., Volpert V., Travelling waves for a bistable reaction–diffusion equation with delay, 2017, arXiv: 1701.08560v1 | MR
[53] Volpert A., Volpert V., “The construction of the Leray–Schauder degree for elliptic operators in unbounded domains”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11:3 (1994), 245–273 | DOI | MR
[54] Volpert A., Volpert V., “Existence of multidimensional travelling waves and systems of waves”, Commun. Part. Differ. Equ., 26:3–4 (2001), 76–85 | MR
[55] Volpert A., Volpert V., “Properness and topological degree for general elliptic operators”, Abstr. Appl. Anal., 2003, no. 3, 129–181 | DOI | MR
[56] Volpert A., Volpert V., “Formally adjoint problems and solvability conditions for elliptic operators”, Russ. J. Math. Phys., 11:4 (2004), 474–497 | MR
[57] Volpert A., Volpert V., “Fredholm property of elliptic operators in unbounded domains”, Trans. Moscow Math. Soc., 67, 2006, 127–197 | DOI | MR
[58] Volpert A., Volpert Vit., Volpert Vl., Traveling Wave Solutions of Parabolic Systems, Amer. Math. Soc., Providence, 1994 | MR
[59] Volpert V., “Asymptotic behavior of solutions of a nonlinear diffusion equation with a source term of general form”, Sib. Math. J., 30:1 (1989), 25–36 | DOI | MR
[60] Volpert V., “Convergence to a wave of solutions of a nonlinear diffusion equation with source of general type”, Sib. Math. J., 30:2 (1989), 203–210 | DOI | MR
[61] Volpert V., Elliptic Partial Differential Equations, v. 1, Fredholm Theory of Elliptic Problems in Unbounded Domains, Birkhäuser, Basel, 2011 | MR
[62] Volpert V., Elliptic Partial Differential Equations, v. 2, Reaction-Diffusion Equations, Birkhäuser, Basel, 2014 | MR
[63] Volpert V., “Pulses and waves for a bistable nonlocal reaction-diffusion equation”, Appl. Math. Lett., 44 (2015), 21–25 | DOI | MR
[64] Volpert V., Reinberg N., Benmir M., Boujena S., “On pulse solutions of a reaction-diffusion system in population dynamics”, Nonlinear Anal., 120 (2015), 76–85 | DOI | MR
[65] Volpert V., Volpert A., Collet J. F., “Topological degree for elliptic operators in unbounded cylinders”, Adv. Differ. Equ., 4:6 (1999), 777–812 | MR
[66] Vougalter V., Volpert V., “Solvability relations for some non Fredholm operators”, Int. Electron. J. Pure Appl. Math., 2:1 (2010), 75–83 | MR
[67] Vougalter V., Volpert V., “Solvability conditions for some non-Fredholm operators”, Proc. Edinb. Math. Soc. (2), 54:1 (2011), 249–271 | DOI | MR
[68] Vougalter V., Volpert V., “On the existence of stationary solutions for some non Fredholm integro-differential equations”, Doc. Math., 16 (2011), 561–580 | MR
[69] Vougalter V., Volpert V., “Existence of stationary pulses for nonlocal reaction-diffusion equations”, Doc. Math., 19 (2014), 1141–1153 | MR