Method of monotone solutions for reaction-diffusion equations
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 3, pp. 437-454

Voir la notice de l'article provenant de la source Math-Net.Ru

Existence of solutions of reaction-diffusion systems of equations in unbounded domains is studied by the Leray–Schauder (LS) method based on the topological degree for elliptic operators in unbounded domains and on a priori estimates of solutions in weighted spaces. We identify some reactiondiffusion systems for which there exist two subclasses of solutions separated in the function space, monotone and non-monotone solutions. A priori estimates and existence of solutions are obtained for monotone solutions allowing to prove their existence by the LS method. Various applications of this method are given.
@article{CMFD_2017_63_3_a3,
     author = {V. Volpert and V. Vougalter},
     title = {Method of monotone solutions for reaction-diffusion equations},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {437--454},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a3/}
}
TY  - JOUR
AU  - V. Volpert
AU  - V. Vougalter
TI  - Method of monotone solutions for reaction-diffusion equations
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2017
SP  - 437
EP  - 454
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a3/
LA  - ru
ID  - CMFD_2017_63_3_a3
ER  - 
%0 Journal Article
%A V. Volpert
%A V. Vougalter
%T Method of monotone solutions for reaction-diffusion equations
%J Contemporary Mathematics. Fundamental Directions
%D 2017
%P 437-454
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a3/
%G ru
%F CMFD_2017_63_3_a3
V. Volpert; V. Vougalter. Method of monotone solutions for reaction-diffusion equations. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 3, pp. 437-454. http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a3/