Lagrangian representations for linear and nonlinear transport
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 3, pp. 418-436

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we present a unifying approach for two classes of first order partial differential equations: we introduce the notion of Lagrangian representation in the settings of continuity equation and scalar conservation laws. This yields, on the one hand, the uniqueness of weak solutions to transport equation driven by a two dimensional BV nearly incompressible vector field. On the other hand, it is proved that the entropy dissipation measure for scalar conservation laws in one space dimension is concentrated on countably many Lipschitz curves.
@article{CMFD_2017_63_3_a2,
     author = {S. Bianchini and P. Bonicatto and E. Marconi},
     title = {Lagrangian representations for linear and nonlinear transport},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {418--436},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a2/}
}
TY  - JOUR
AU  - S. Bianchini
AU  - P. Bonicatto
AU  - E. Marconi
TI  - Lagrangian representations for linear and nonlinear transport
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2017
SP  - 418
EP  - 436
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a2/
LA  - ru
ID  - CMFD_2017_63_3_a2
ER  - 
%0 Journal Article
%A S. Bianchini
%A P. Bonicatto
%A E. Marconi
%T Lagrangian representations for linear and nonlinear transport
%J Contemporary Mathematics. Fundamental Directions
%D 2017
%P 418-436
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a2/
%G ru
%F CMFD_2017_63_3_a2
S. Bianchini; P. Bonicatto; E. Marconi. Lagrangian representations for linear and nonlinear transport. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 3, pp. 418-436. http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a2/