Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2017_63_3_a2, author = {S. Bianchini and P. Bonicatto and E. Marconi}, title = {Lagrangian representations for linear and nonlinear transport}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {418--436}, publisher = {mathdoc}, volume = {63}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a2/} }
TY - JOUR AU - S. Bianchini AU - P. Bonicatto AU - E. Marconi TI - Lagrangian representations for linear and nonlinear transport JO - Contemporary Mathematics. Fundamental Directions PY - 2017 SP - 418 EP - 436 VL - 63 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a2/ LA - ru ID - CMFD_2017_63_3_a2 ER -
%0 Journal Article %A S. Bianchini %A P. Bonicatto %A E. Marconi %T Lagrangian representations for linear and nonlinear transport %J Contemporary Mathematics. Fundamental Directions %D 2017 %P 418-436 %V 63 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a2/ %G ru %F CMFD_2017_63_3_a2
S. Bianchini; P. Bonicatto; E. Marconi. Lagrangian representations for linear and nonlinear transport. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 63 (2017) no. 3, pp. 418-436. http://geodesic.mathdoc.fr/item/CMFD_2017_63_3_a2/
[1] Alberti G., Bianchini S., Crippa G., “Structure of level sets and Sard-type properties of Lipschitz maps”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 12:4 (2013), 863–902 | MR
[2] Alberti G., Bianchini S., Crippa G., “A uniqueness result for the continuity equation in two dimensions”, J. Eur. Math. Soc. (JEMS), 16:2 (2014), 201–234 | DOI | MR
[3] Ambrosio L., “Transport equation and Cauchy problem for BV vector fields”, Invent. Math., 158:2 (2004), 227–260 | DOI | MR
[4] Ambrosio L., Fusco N., Pallara D., Functions of Bounded Variation and Free Discontinuity Problems, Clarendon Press, Oxford, 2000 | MR
[5] Bardos C., le Roux A. Y., Nédélec J.-C., “First order quasilinear equations with boundary conditions”, Commun. Part. Differ. Equ., 4 (1979), 1017–1034 | DOI | MR
[6] Bianchini S., Bonicatto S., A uniqueness result for the decomposition of vector fields in $\mathbb R^d$, Preprint 15/2017/MATE, SISSA
[7] Bianchini S., Bonicatto A., Gusev N. A., “Renormalization for autonomous nearly incompressible BV vector fields in two dimensions”, SIAM J. Math. Anal., 48:1 (2016), 1–33 | DOI | MR
[8] Bianchini S., Gusev N. A., “Steady nearly incompressible vector fields in two-dimension: chain rule and renormalization”, Arch. Ration. Mech. Anal., 222:2 (2016), 451–505 | DOI | MR
[9] Bianchini S., Marconi E., “On the concentration of entropy for scalar conservation laws”, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016), 73–88 | MR
[10] Bianchini S., Marconi E., “On the structure of $L^\infty$ entropy solutions to scalar conservation laws in one-space dimension”, Arch. Ration. Mech. Anal., 226:1 (2017), 441–493 | DOI | MR
[11] Bianchini S., Marconi E., Bonicatto S., A Lagrangian approach to multidimensional scalar conservation laws, Preprint 36/2017/MATE, SISSA
[12] Bianchini S., Modena S., “Quadratic interaction functional for general systems of conservation laws”, Commun. Math. Phys., 338:3 (2015), 1075–1152 | DOI | MR
[13] Bianchini S., Yu L., “Structure of entropy solutions to general scalar conservation laws in one space dimension”, J. Math. Anal. Appl., 428:1 (2015), 356–386 | DOI | MR
[14] Bressan A., “An ill posed Cauchy problem for a hyperbolic system in two space dimensions”, Rend. Semin. Mat. Univ. Padova, 110 (2003), 103–117 | MR
[15] Cheng K. S., “A regularity theorem for a nonconvex scalar conservation law”, J. Differ. Equ., 61 (1986), 79–127 | DOI | MR
[16] Dafermos C. M., “Continuous solutions for balance laws”, Ric. Mat., 55:1 (2006), 79–92 | DOI | MR
[17] Dafermos C. M., Hyperbolic Conservation Laws in Continuum Physics, Springer, Berlin–Heidelberg, 2010 | MR
[18] de Lellis C., “Notes on hyperbolic systems of conservation laws and transport equations”, Handb. Differ. Equ., 3 (2007), 277–382 | MR
[19] de Lellis C., Riviere T., “Concentration estimates for entropy measures”, J. Math. Pures Appl. (9), 82 (2003), 1343–1367 | DOI | MR
[20] DiPerna R. J., Lions P.-L., “Ordinary differential equations, transport theory and Sobolev spaces”, Invent. Math., 98:3 (1989), 511–547 | DOI | MR
[21] Oleĭnik O. A., “Discontinuous solutions of non-linear differential equations”, Am. Math. Soc. Transl. Ser. 2, 26 (1963), 95–172 | MR
[22] Otto F., “Initial-boundary value problem for a scalar conservation law”, C. R. Math. Acad. Sci. Paris, 322:8 (1996), 729–734 | MR