Removal of isolated singularities of generalized quasiisometries on Riemannian manifolds
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 63 (2017) no. 2, pp. 266-277

Voir la notice de l'article provenant de la source Math-Net.Ru

For mappings with unbounded characteristics we prove theorems on removal of isolated singularities on Riemannian manifolds. We prove that if a mapping satisfies certain inequality of absolute values and its quasiconformity characteristic has a majorant of finite average oscillation at a fixed singular point, then it has a limit at this point.
@article{CMFD_2017_63_2_a3,
     author = {D. P. Ilyutko and E. A. Sevostyanov},
     title = {Removal of isolated singularities of generalized quasiisometries on {Riemannian} manifolds},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {266--277},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a3/}
}
TY  - JOUR
AU  - D. P. Ilyutko
AU  - E. A. Sevostyanov
TI  - Removal of isolated singularities of generalized quasiisometries on Riemannian manifolds
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2017
SP  - 266
EP  - 277
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a3/
LA  - ru
ID  - CMFD_2017_63_2_a3
ER  - 
%0 Journal Article
%A D. P. Ilyutko
%A E. A. Sevostyanov
%T Removal of isolated singularities of generalized quasiisometries on Riemannian manifolds
%J Contemporary Mathematics. Fundamental Directions
%D 2017
%P 266-277
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a3/
%G ru
%F CMFD_2017_63_2_a3
D. P. Ilyutko; E. A. Sevostyanov. Removal of isolated singularities of generalized quasiisometries on Riemannian manifolds. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 63 (2017) no. 2, pp. 266-277. http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a3/