Removal of isolated singularities of generalized quasiisometries on Riemannian manifolds
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 63 (2017) no. 2, pp. 266-277.

Voir la notice de l'article provenant de la source Math-Net.Ru

For mappings with unbounded characteristics we prove theorems on removal of isolated singularities on Riemannian manifolds. We prove that if a mapping satisfies certain inequality of absolute values and its quasiconformity characteristic has a majorant of finite average oscillation at a fixed singular point, then it has a limit at this point.
@article{CMFD_2017_63_2_a3,
     author = {D. P. Ilyutko and E. A. Sevostyanov},
     title = {Removal of isolated singularities of generalized quasiisometries on {Riemannian} manifolds},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {266--277},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a3/}
}
TY  - JOUR
AU  - D. P. Ilyutko
AU  - E. A. Sevostyanov
TI  - Removal of isolated singularities of generalized quasiisometries on Riemannian manifolds
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2017
SP  - 266
EP  - 277
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a3/
LA  - ru
ID  - CMFD_2017_63_2_a3
ER  - 
%0 Journal Article
%A D. P. Ilyutko
%A E. A. Sevostyanov
%T Removal of isolated singularities of generalized quasiisometries on Riemannian manifolds
%J Contemporary Mathematics. Fundamental Directions
%D 2017
%P 266-277
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a3/
%G ru
%F CMFD_2017_63_2_a3
D. P. Ilyutko; E. A. Sevostyanov. Removal of isolated singularities of generalized quasiisometries on Riemannian manifolds. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 63 (2017) no. 2, pp. 266-277. http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a3/

[1] E. S. Afanas'eva, V. I. Ryazanov, R. R. Salimov, “On mappings in the Orlicz–Sobolev classes on Riemannian manifolds”, Ukr. mat. vestn., 8:3 (2011), 319–342 (in Russian)

[2] K. Kuratovskiy, Topology, v. 2, Mir, Moscow, 1969 (in Russian) | MR

[3] V. G. Maz'ya, Sobolev Spaces, LGU, Leningrad, 1985 (in Russian) | MR

[4] V. M. Miklyukov, “On removable singularities of quasiconformal mappings in the space”, Dokl. AN SSSR, 188:3 (1969), 525–527 (in Russian) | Zbl

[5] V. M. Miklyukov, “Boundary properties of $n$-dimensional quasiconformal mappings”, Dokl. AN SSSR, 193:3 (1970), 525–527 (in Russian) | Zbl

[6] V. I. Ryazanov, R. R. Salimov, “Weakly flat spaces and boundaries in the theory of mappings”, Ukr. mat. vestn., 4:2 (2007), 199–234 (in Russian) | MR

[7] S. Saks, Theory of Integral, Izd-vo inostrannoy literatury, Moscow, 1949 (in Russian)

[8] E. A. Sevost'yanov, “Generalization of one Poletskii lemma to classes of space mappings”, Ukr. mat. zh., 61:7 (2009), 969–975 (in Russian) | MR | Zbl

[9] E. A. Sevost'yanov, “To the theory of removable mappings with unbounded quasiconformity characteristics”, Izv. RAN. Ser. Mat., 74:1 (2010), 159–174 (in Russian) | DOI | MR | Zbl

[10] E. A. Sevost'yanov, “On some properties of generalized quasiisometries with unbounded characteristics”, Ukr. mat. zh., 63:3 (2011), 385–398 (in Russian) | MR | Zbl

[11] E. S. Smolovaya, “Boundary behavior of ring $Q$-homeomorphisms in metric spaces”, Ukr. mat. zh., 62:5 (2012), 682–689 (in Russian) | MR

[12] B. V. Shabat, Introduction to Complex Analysis, v. 1, Nauka, Moscow, 1976 (in Russian) | MR

[13] Adamowicz T., Shanmugalingam N., “Non-conformal Loewner type estimates for modulus of curve families”, Ann. Acad. Sci. Fenn. Math., 35 (2010), 609–626 | DOI | MR | Zbl

[14] Bishop C. J., Gutlyanskii V. Ya., Martio O., Vuorinen M., “On conformal dilatation in space”, Int. J. Math. Math. Sci., 22 (2003), 1397–1420 | DOI | MR | Zbl

[15] Fuglede B., “Extremal length and functional completion”, Acta Math., 98 (1957), 171–219 | DOI | MR | Zbl

[16] Heinonen J., Lectures on analysis on metric spaces, Springer, New York, 2001 | MR | Zbl

[17] Lee J. M., Riemannian manifolds: an introduction to curvature, Springer, New York, 1997 | MR | Zbl

[18] Martio O., Rickman S., Väisälä J., “Distortion and singularities of quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A1, 465 (1970), 1–13 | MR

[19] Martio O., Ryazanov V., Srebro U., Yakubov E., Moduli in modern mapping theory, Springer, New York, 2009 | MR | Zbl

[20] Rickman S., Quasiregular mappings, Springer, Berlin etc., 1993 | Zbl

[21] Väisälä J., Lectures on $n$-dimensional quasiconformal mappings, Springer, Berlin, etc., 1971 | Zbl