Construction of energetic functions for $\Omega$-stable diffeomorphisms on $2$- and $3$-manifolds
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 63 (2017) no. 2, pp. 191-222 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we review the results connected to existence of the energetic function for discrete dynamical systems. Also we consider technique of construction of such functions for some classes of $\Omega$-stable and structurally stable diffeomorphisms on manifolds of dimension $2$ and $3$.
@article{CMFD_2017_63_2_a0,
     author = {V. Z. Grines and O. V. Pochinka},
     title = {Construction of energetic functions for $\Omega$-stable diffeomorphisms on $2$- and $3$-manifolds},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {191--222},
     year = {2017},
     volume = {63},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a0/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - O. V. Pochinka
TI  - Construction of energetic functions for $\Omega$-stable diffeomorphisms on $2$- and $3$-manifolds
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2017
SP  - 191
EP  - 222
VL  - 63
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a0/
LA  - ru
ID  - CMFD_2017_63_2_a0
ER  - 
%0 Journal Article
%A V. Z. Grines
%A O. V. Pochinka
%T Construction of energetic functions for $\Omega$-stable diffeomorphisms on $2$- and $3$-manifolds
%J Contemporary Mathematics. Fundamental Directions
%D 2017
%P 191-222
%V 63
%N 2
%U http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a0/
%G ru
%F CMFD_2017_63_2_a0
V. Z. Grines; O. V. Pochinka. Construction of energetic functions for $\Omega$-stable diffeomorphisms on $2$- and $3$-manifolds. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 63 (2017) no. 2, pp. 191-222. http://geodesic.mathdoc.fr/item/CMFD_2017_63_2_a0/

[1] V. Z. Grines, “On topological classification of structurally stable diffeomorphisms of surfaces with one-dimensional attractors and repellers”, Mat. sb., 188:4 (1997), 57–94 (in Russian) | DOI | MR | Zbl

[2] V. Z. Grines, E. V. Zhuzhoma, “Structurally stable diffeomorphisms with basic sets of codimension one”, Izv. RAN. Ser. Mat., 66:2 (2002), 3–66 (in Russian) | DOI | MR | Zbl

[3] V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, O. V. Pochinka, “Global attractor and repeller of Morse–Smale diffeomorphisms”, Tr. MIAN, 271, 2010, 111–133 (in Russian) | MR | Zbl

[4] V. Z. Grines, E. V. Zhuzhoma, O. V. Pochinka, “Rough diffeomorphisms with basic sets of codimension one”, Sovrem. mat. Fundam. napravl., 57, 2015, 5–30 (in Russian)

[5] V. Z. Grines, F. Laudenbakh, O. Pochinka, “Quasi-energy function for diffeomorphisms with wild separatrices”, Mat. zametki, 86:2 (2009), 175–183 (in Russian) | DOI | MR | Zbl

[6] V. Z. Grines, V. S. Medvedev, E. V. Zhuzhoma, “On surface attractors and repellers on 3-manifolds”, Mat. zametki, 78:6 (2005), 813–826 (in Russian) | DOI | MR | Zbl

[7] V. Z. Grines, M. K. Noskova, O. V. Pochinka, “Construction of the energy function for A-diffeomorphisms with two-dimensional nonwandering set on 3-manifolds”, Tr. Srednevolzhsk. Mat. ob-va, 17:3 (2015), 12–17 (in Russian) | Zbl

[8] V. Z. Grines, M. K. Noskova, O. V. Pochinka, “Construction of the energy function for three-dimensional cascades with two-dimensional expanding attractor”, Tr. Mosk. Mat. ob-va, 76, no. 2, 2015, 271–286 (in Russian) | Zbl

[9] V. S. Medvedev, E. V. Zhuzhoma, “On nonorientable two-dimensional basic sets on 3-manifolds”, Mat. sb., 193:6 (2002), 83–104 (in Russian) | DOI | MR | Zbl

[10] Dzh. Milnor, The Morse Theory, Platon, Volgograd, 1969 (in Russian) | MR

[11] T. M. Mitriakova, O. V. Pochinka, A. E. Shishenkova, “Energy function for diffeomorphisms of surfaces with finite hyperbolic chain recurrent set”, Zhurn. Srednevolzhsk. Mat. ob-va, 14:1 (2012), 98–107 (in Russian)

[12] A. A. Oshemkov, V. V. Sharko, “On classification of Morse–Smale flows on two-dimensional manifolds”, Mat. sb., 189:8 (1998), 93–140 (in Russian) | DOI | MR | Zbl

[13] R. V. Plykin, “Sources and sinks of A-diffeomorphisms of surfaces”, Mat. sb., 94(136):2 (1974), 243–264 (in Russian) | MR | Zbl

[14] R. V. Plykin, “On the structure of centralizers of Anosov diffeomorphisms of the torus”, Usp. mat. nauk, 53:6 (1998), 259–260 (in Russian) | DOI | MR | Zbl

[15] M. M. Postnikov, Lectures in Geometry. Semester V. Riemannian Geometry, Faktorial, Moscow, 1998 (in Russian)

[16] S. Smale, “Differentiable dynamical systems”, Usp. mat. nauk, 25:1 (1970), 113–185 (in Russian) | MR

[17] Artin E., Fox R. H., “Some wild cells and spheres in three-dimensional space”, Ann. Math., 49 (1948), 979–990 | DOI | MR | Zbl

[18] Bonatti Ch., Grines V., “Knots as topological invariant for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dyn. Control Syst., 6 (2000), 579–602 | DOI | MR | Zbl

[19] Conley C., Isolated invariant sets and Morse index, Am. Math. Soc., Providence, 1978 | MR | Zbl

[20] Debrunner H., Fox R., “A mildly wild imbedding of an $n$-frame”, Duke Math. J., 27 (1960), 425–429 | DOI | MR | Zbl

[21] Franks J., “Nonsingular Smale flow on $S^3$”, Topology, 24:3 (1985), 265–282 | DOI | MR | Zbl

[22] Franks J., “A variation on the Poincare–Birkhoff theorem”, Hamiltonian dynamical systems, Proc. AMS-INS-SIAM Jt. Summer Res. Conf., Contemporary Math., 81, 1988, 111–117 | DOI | MR | Zbl

[23] Grines V., Laudenbach F., Pochinka O., “Self-indexing energy function for Morse–Smale diffeomorphisms on 3-manifolds”, Mosc. Math. J., 9:4 (2009), 801–821 | MR | Zbl

[24] Grines V. Z., Laudenbach F., Pochinka O. V., “Dynamically ordered energy function for Morse–Smale diffeomorphisms on 3-manifolds”, Proc. Steklov Inst. Math., 278:1 (2012), 27–40 | DOI | MR | Zbl

[25] Grines V., Levchenko Y., Medvedev V., Pochinka O., “The topological classification of structural stable 3-diffeomorphisms with two-dimensional basic sets”, Nonlinearity, 28:11 (2015), 4081–4102 | DOI | MR | Zbl

[26] Grines V., Medvedev T., Pochinka O., Dynamical systems on 2- and 3-manifolds, Springer, Cham, 2016 | MR | Zbl

[27] Grines V., Zhuzhoma E., “On structurally stable diffeomorphisms with codimension one expanding attractors”, Trans. Am. Math. Soc., 357:2 (2005), 617–667 | DOI | MR | Zbl

[28] Harrold O. G., Griffith H. C., Posey E. E., “A characterization of tame curves in three-space”, Trans. Am. Math. Soc., 79 (1955), 12–34 | DOI | MR | Zbl

[29] Kaplan J., Mallet-Paret J., Yorke J., “The Lyapunov dimension of nowhere differentiable attracting torus”, Ergodic Theory Dynam. Systems, 2 (1984), 261–281 | MR

[30] Meyer K. R., “Energy functions for Morse–Smale systems”, Amer. J. Math., 90 (1968), 1031–1040 | DOI | MR | Zbl

[31] Palis J., “On Morse–Smale dynamical systems”, Topology, 8 (1969), 385–404 | DOI | MR

[32] Pixton D., “Wild unstable manifolds”, Topology, 16 (1977), 167–172 | DOI | MR | Zbl

[33] Robinson C., Dynamical Systems: stability, symbolic dynamics, and chaos, CRC Press, Boca Raton, 1999 | MR | Zbl

[34] Shub M., “Morse–Smale diffeomorphisms are unipotent on homology”, Dynamical Syst., Proc. Sympos. Univ. Bahia (Salvador, 1971), Academic Press, New York, 1973, 489–491 | MR

[35] Shub M., Sullivan D., “Homology theory and dynamical systems”, Topology, 4 (1975), 109–132 | DOI | MR

[36] Smale S., “Morse inequalities for a dynamical system”, Bull. Am. Math. Soc., 66 (1960), 43–49 | DOI | MR | Zbl

[37] Smale S., “On gradient dynamical systems”, Annals Math., 74 (1961), 199–206 | DOI | MR | Zbl

[38] Smale S., “Differentiable dynamical systems”, Bull. Am. Math. Soc., 73 (1967), 747–817 | DOI | MR | Zbl

[39] Wilson W., “Smoothing derivatives of functions and applications”, Trans. Am. Math. Soc., 139 (1969), 413–428 | DOI | MR | Zbl