On the convergence rate of continuous Newton method
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), Tome 62 (2016), pp. 152-165.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the convergence of continuous Newton method for solving nonlinear equations with holomorphic mappings in complex Banach spaces. Our contribution is based on a recent progress in the geometric theory of spirallike functions. We prove convergence theorems and illustrate them by numerical simulations.
@article{CMFD_2016_62_a9,
     author = {A. Gibali and D. Shoikhet and N. Tarkhanov},
     title = {On the convergence rate of continuous {Newton} method},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {152--165},
     publisher = {mathdoc},
     volume = {62},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2016_62_a9/}
}
TY  - JOUR
AU  - A. Gibali
AU  - D. Shoikhet
AU  - N. Tarkhanov
TI  - On the convergence rate of continuous Newton method
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2016
SP  - 152
EP  - 165
VL  - 62
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2016_62_a9/
LA  - ru
ID  - CMFD_2016_62_a9
ER  - 
%0 Journal Article
%A A. Gibali
%A D. Shoikhet
%A N. Tarkhanov
%T On the convergence rate of continuous Newton method
%J Contemporary Mathematics. Fundamental Directions
%D 2016
%P 152-165
%V 62
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2016_62_a9/
%G ru
%F CMFD_2016_62_a9
A. Gibali; D. Shoikhet; N. Tarkhanov. On the convergence rate of continuous Newton method. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), Tome 62 (2016), pp. 152-165. http://geodesic.mathdoc.fr/item/CMFD_2016_62_a9/

[1] M. K. Gavurin, “Nonlinear functional equations and continuous analogues of iterative methods”, Izv. vuzov. Ser. Mat., 1958, no. 5, 18–31 | MR | Zbl

[2] G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, Nauka, M., 1966

[3] Yu. L. Daletskii, M. G. Krein, “Stability of Solutions of Differential Equations in Banach Spaces”, Nauka, M., 1970

[4] Airapetyan R. G., “Continuous Newton method and its modification”, Appl. Anal., 1 (1999), 463–484 | DOI | MR

[5] Airapetyan R. G., Ramm A. G., Smirnova A. B., “Continuous analog of the Gauss–Newton method”, Math. Methods Appl. Sci., 9 (1999), 1–13 | DOI | MR

[6] Heath L. F., Suffridge T. J., “Holomorphic retracts in complex $n$-space”, Illinois J. Math., 25 (1981), 125–135 | MR | Zbl

[7] Kantorovich L., Akilov G., Functional analysis in normed spaces, The Macmillan Co., New York, 1964 | MR

[8] Kresin G., Maz'ya V. G., Sharp real-part theorems. A unified approach, Springer, Berlin, 2007 | MR | Zbl

[9] Lutsky Ya., “Continuous Newton method for star-like functions”, Electron. J. Differ. Equ. Conf., 12 (2005), 79–85 | MR | Zbl

[10] Marx A., “Untersuchungen über schlichte Abbildungen”, Math. Ann., 107:1 (1933), 40–67 | DOI | MR

[11] Milano F., “Continuous Newton's method for power flow analysis”, IEEE Trans. Power Syst., 24 (2009), 50–57 | DOI

[12] Neuberger J. W., A sequence of problems on semigroups, Springer, New York, 2011 | MR | Zbl

[13] Ortega J. M., Rheinboldt W. C., Iterative solution of nonlinear equations in several variables, Academic Press, New York–London, 1970 | MR | Zbl

[14] Reich S., Shoikhet D., Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces, Imperial College Press, London, 2005 | MR

[15] Siskakis A. G., “Semigroups of composition operators on spaces of analytic functions, a review”, Contemp. Math., 213 (1998), 229–252 | DOI | MR | Zbl

[16] Strohhäcker E., “Beiträge zur Theorie der schlichiten Functionen”, Math. Z., 37 (1933), 356–380 | DOI | MR | Zbl

[17] Suffridge T. J., “Starlike and convex maps in Banach spaces”, Pacific J. Math., 46 (1973), 575–589 | DOI | MR | Zbl

[18] Suffridge T. J., “Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions”, Lecture Notes Math., 599, 1976, 146–159 | DOI | MR

[19] Yosida K., Functional analysis, Springer, Berlin–New York, 1980 | MR | Zbl