On the convergence rate of continuous Newton method
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), Tome 62 (2016), pp. 152-165

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the convergence of continuous Newton method for solving nonlinear equations with holomorphic mappings in complex Banach spaces. Our contribution is based on a recent progress in the geometric theory of spirallike functions. We prove convergence theorems and illustrate them by numerical simulations.
@article{CMFD_2016_62_a9,
     author = {A. Gibali and D. Shoikhet and N. Tarkhanov},
     title = {On the convergence rate of continuous {Newton} method},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {152--165},
     publisher = {mathdoc},
     volume = {62},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2016_62_a9/}
}
TY  - JOUR
AU  - A. Gibali
AU  - D. Shoikhet
AU  - N. Tarkhanov
TI  - On the convergence rate of continuous Newton method
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2016
SP  - 152
EP  - 165
VL  - 62
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2016_62_a9/
LA  - ru
ID  - CMFD_2016_62_a9
ER  - 
%0 Journal Article
%A A. Gibali
%A D. Shoikhet
%A N. Tarkhanov
%T On the convergence rate of continuous Newton method
%J Contemporary Mathematics. Fundamental Directions
%D 2016
%P 152-165
%V 62
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2016_62_a9/
%G ru
%F CMFD_2016_62_a9
A. Gibali; D. Shoikhet; N. Tarkhanov. On the convergence rate of continuous Newton method. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), Tome 62 (2016), pp. 152-165. http://geodesic.mathdoc.fr/item/CMFD_2016_62_a9/