Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2016_62_a8, author = {L. E. Rossovskii and A. R. Khanalyev}, title = {Coercive solvability of nonlocal boundary-value problems for parabolic equations}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {140--151}, publisher = {mathdoc}, volume = {62}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2016_62_a8/} }
TY - JOUR AU - L. E. Rossovskii AU - A. R. Khanalyev TI - Coercive solvability of nonlocal boundary-value problems for parabolic equations JO - Contemporary Mathematics. Fundamental Directions PY - 2016 SP - 140 EP - 151 VL - 62 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2016_62_a8/ LA - ru ID - CMFD_2016_62_a8 ER -
%0 Journal Article %A L. E. Rossovskii %A A. R. Khanalyev %T Coercive solvability of nonlocal boundary-value problems for parabolic equations %J Contemporary Mathematics. Fundamental Directions %D 2016 %P 140-151 %V 62 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2016_62_a8/ %G ru %F CMFD_2016_62_a8
L. E. Rossovskii; A. R. Khanalyev. Coercive solvability of nonlocal boundary-value problems for parabolic equations. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), Tome 62 (2016), pp. 140-151. http://geodesic.mathdoc.fr/item/CMFD_2016_62_a8/
[1] V. V. Vlasov, Functional Differential Equations in Sobolev Spaces and Their Spectral Analysis, Izd-vo Popechit. Sov. mekh.-mat. f-ta MGU im. M. V. Lomonosova, Moscow, 2011
[2] E. I. Galakhov, A. L. Skubachevskii, “On contracting nonnegative semigroups with nonlocal conditions”, Math. Digest, 189:1 (1998), 45–78 | DOI | MR | Zbl
[3] P. L. Gurevich, “Elliptic problems with nonlocal boundary conditions and Feller semigroups”, Contemp. Math. Fundam. Directions, 38, 2010, 3–173 | MR | Zbl
[4] T. Kato, Perturbation Theory for Linear Operators, Mir, Moscow, 1972
[5] M. A. Krasnosel'skiy, P. P. Zabreyko, E. I. Pustyl'nik, P. E. Sobolevskiy, Integral Operators in Spaces of Summable Functions, Nauka, Moscow, 1966
[6] S. G. Kreyn, Linear Differential Equations in Banach Space, Nauka, Moscow, 1967
[7] S. G. Kreyn, M. I. Khazan, “Differential equations in Banach space”, Totals Sci. Tech. Ser. Math. Anal., 21, 1983, 130–264 | MR | Zbl
[8] L. E. Rossovskii, “Elliptic functional differential equations with contractions and extensions of independent variables of the unknown function”, Contemp. Math. Fundam. Directions, 54, 2014, 3–138 | MR
[9] A. M. Selitskiy, A. L. Skubachevskii, “Second boundary-value problem for parabolic differential-difference equation”, Proc. Petrovskii Semin., 26, 2007, 324–347 | MR
[10] A. L. Skubachevskii, “Nonclassical boundary-value problems. I”, Contemp. Math. Fundam. Directions, 26, 2007, 3–132 | MR | Zbl
[11] A. L. Skubachevskii, “Nonclassical boundary-value problems. II”, Contemp. Math. Fundam. Directions, 33, 2009, 3–179 | MR
[12] A. L. Skubachevskii, E. L. Tsvetkov, “Second boundary-value problem for elliptic differential-difference equations”, Differ. Equ., 25:10 (1989), 1766–1776 | MR
[13] A. L. Skubachevskii, R. V. Shamin, “First mixed problem for a parabolic differential-difference equation”, Math. Notes, 66:1 (1999), 145–153 | DOI | MR | Zbl
[14] P. E. Sobolevskiy, “On equations of parabolic type in a Banach space”, Proc. Moscow Math. Soc., 10, 1961, 297–350 | MR | Zbl
[15] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Mir, Moscow, 1985
[16] E. L. Tsvetkov, “Solvability and spectrum of the third boundary-value problem for elliptic differential-difference equation”, Math. Notes, 51:6 (1992), 107–114 | MR | Zbl
[17] Ashyralyev A., Hanalyev A., “Coercive solvability of parabolic differential equations with dependent operators”, TWMS J. Appl. Eng. Math., 2:1 (2012), 75–93 | MR | Zbl
[18] Ashyralyev A., Hanalyev A., “Well-posedness of nonlocal parabolic differential problems with dependent operators”, The Sci. World J., 2014 (2014), 1–11
[19] Ashyralyev A., Hanalyev A., Sobolevskii P. E., “Coercive solvability of the nonlocal boundary-value problem for parabolic differential equations”, Abstr. Appl. Anal., 6:1 (2001), 53–61 | DOI | MR | Zbl
[20] Ashyralyev A., Sobolevskii P. E., New difference schemes for partial differential equations, Birkhäuser, Basel–Boston–Berlin, 2004 | MR | Zbl
[21] Engel K.-J., Nagel R., One-parameter semigroups for linear evolution equations, Springer, New York, 2000 | MR | Zbl
[22] Skubachevskii A. L., “The first boundary value problem for strongly elliptic differential-difference equations”, J. Differ. Equ., 63 (1986), 332–361 | DOI | MR
[23] Skubachevskii A. L., Elliptic functional-differential equations and applications, Birkhäuser, Basel–Boston–Berlin, 1997 | MR | Zbl