Coercive solvability of nonlocal boundary-value problems for parabolic equations
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), Tome 62 (2016), pp. 140-151

Voir la notice de l'article provenant de la source Math-Net.Ru

In a Banach space $E$ we consider nonlocal problem \begin{align*} '(t)+A(t)v(t)=f(t)\quad(0\leq t\leq1),\\ (0)=v(\lambda)+\mu\quad(0\lambda\leq1) \end{align*} for abstract parabolic equation with linear unbounded strongly positive operator $A(t)$ with independent of $t$, everywhere dense in $E$ domain $D=D(A(t))$. This operator generates analytic semigroup $\exp\{-sA(t)\}$ ($s\geq0$). We prove the coercive solvability of the problem in the Banach space $C_0^{\alpha,\alpha}([0,1],E)$ $(0\alpha1)$ with the weight $(t+\tau)^\alpha$. This result was previously known only for a constant operator. We consider applications in the class of parabolic functional differential equations with transformation of spatial variables and in the class of parabolic equations with nonlocal conditions on the boundary of domain. Thus, this describes parabolic equations with nonlocal conditions both in time and in spatial variables.
@article{CMFD_2016_62_a8,
     author = {L. E. Rossovskii and A. R. Khanalyev},
     title = {Coercive solvability of nonlocal boundary-value problems for parabolic equations},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {140--151},
     publisher = {mathdoc},
     volume = {62},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2016_62_a8/}
}
TY  - JOUR
AU  - L. E. Rossovskii
AU  - A. R. Khanalyev
TI  - Coercive solvability of nonlocal boundary-value problems for parabolic equations
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2016
SP  - 140
EP  - 151
VL  - 62
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2016_62_a8/
LA  - ru
ID  - CMFD_2016_62_a8
ER  - 
%0 Journal Article
%A L. E. Rossovskii
%A A. R. Khanalyev
%T Coercive solvability of nonlocal boundary-value problems for parabolic equations
%J Contemporary Mathematics. Fundamental Directions
%D 2016
%P 140-151
%V 62
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2016_62_a8/
%G ru
%F CMFD_2016_62_a8
L. E. Rossovskii; A. R. Khanalyev. Coercive solvability of nonlocal boundary-value problems for parabolic equations. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), Tome 62 (2016), pp. 140-151. http://geodesic.mathdoc.fr/item/CMFD_2016_62_a8/