Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2016_62_a5, author = {E. P. Ivanova}, title = {On coercivity of differential-difference equations with incommensurable shifts of arguments}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {85--99}, publisher = {mathdoc}, volume = {62}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2016_62_a5/} }
TY - JOUR AU - E. P. Ivanova TI - On coercivity of differential-difference equations with incommensurable shifts of arguments JO - Contemporary Mathematics. Fundamental Directions PY - 2016 SP - 85 EP - 99 VL - 62 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2016_62_a5/ LA - ru ID - CMFD_2016_62_a5 ER -
E. P. Ivanova. On coercivity of differential-difference equations with incommensurable shifts of arguments. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), Tome 62 (2016), pp. 85-99. http://geodesic.mathdoc.fr/item/CMFD_2016_62_a5/
[1] E. P. Ivanova, On maximal partition of domains and smoothness of solutions of boundary-value problems for elliptic differential difference equations, Submitted to VINITI, No. 297-81, 1981, 14 pp.
[2] E. P. Ivanova, “Continuous dependence of solutions of boundary-value problems for differential-difference equations on shifts of the argument”, Contemp. Probl. Math. Fundam. Directions, 59, 2016, 74–96
[3] G. A. Kamenskiy, A. L. Skubachevskiy, “Linear Boundary-Value Problems for Differential-Difference Equations”, MAI, Moscow, 1995
[4] A. Kofman, Introduction to Applied Combinatorics, Nauka, Moscow, 1975
[5] L. E. Rossovskiy, “Elliptic functional differential equations with contractions and extensions of independent variables of the unknown function”, Contemp. Probl. Math. Fundam. Directions, 54, 2014, 3–138 | MR
[6] A. L. Skubachevskiy, “Boundary-value problems for elliptic differential-difference equations and their applications”, Progr. Math. Sci., 71:5 (2016), 3–112 | DOI | MR
[7] Ivanova E. P., “Elliptic differential-difference equations with incommensurable shifts of arguments”, Euras. Math. J., 7:3 (2016), 33–40
[8] Skubachevskii A. L., Elliptic functional differential equations and applications, Birkhauser, Basel–Boston–Berlin, 1997 | MR | Zbl
[9] Skubachevskii A. L., “Bifurcation of periodic solutions for nonlinear parabolic functional differential equations arising in optoelectronics”, Nonlinear Anal., 32:2 (1998), 261–278 | DOI | MR | Zbl