On coercivity of differential-difference equations with incommensurable shifts of arguments
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), Tome 62 (2016), pp. 85-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CMFD_2016_62_a5,
     author = {E. P. Ivanova},
     title = {On coercivity of differential-difference equations with incommensurable shifts of arguments},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {85--99},
     publisher = {mathdoc},
     volume = {62},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2016_62_a5/}
}
TY  - JOUR
AU  - E. P. Ivanova
TI  - On coercivity of differential-difference equations with incommensurable shifts of arguments
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2016
SP  - 85
EP  - 99
VL  - 62
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2016_62_a5/
LA  - ru
ID  - CMFD_2016_62_a5
ER  - 
%0 Journal Article
%A E. P. Ivanova
%T On coercivity of differential-difference equations with incommensurable shifts of arguments
%J Contemporary Mathematics. Fundamental Directions
%D 2016
%P 85-99
%V 62
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2016_62_a5/
%G ru
%F CMFD_2016_62_a5
E. P. Ivanova. On coercivity of differential-difference equations with incommensurable shifts of arguments. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), Tome 62 (2016), pp. 85-99. http://geodesic.mathdoc.fr/item/CMFD_2016_62_a5/

[1] E. P. Ivanova, On maximal partition of domains and smoothness of solutions of boundary-value problems for elliptic differential difference equations, Submitted to VINITI, No. 297-81, 1981, 14 pp.

[2] E. P. Ivanova, “Continuous dependence of solutions of boundary-value problems for differential-difference equations on shifts of the argument”, Contemp. Probl. Math. Fundam. Directions, 59, 2016, 74–96

[3] G. A. Kamenskiy, A. L. Skubachevskiy, “Linear Boundary-Value Problems for Differential-Difference Equations”, MAI, Moscow, 1995

[4] A. Kofman, Introduction to Applied Combinatorics, Nauka, Moscow, 1975

[5] L. E. Rossovskiy, “Elliptic functional differential equations with contractions and extensions of independent variables of the unknown function”, Contemp. Probl. Math. Fundam. Directions, 54, 2014, 3–138 | MR

[6] A. L. Skubachevskiy, “Boundary-value problems for elliptic differential-difference equations and their applications”, Progr. Math. Sci., 71:5 (2016), 3–112 | DOI | MR

[7] Ivanova E. P., “Elliptic differential-difference equations with incommensurable shifts of arguments”, Euras. Math. J., 7:3 (2016), 33–40

[8] Skubachevskii A. L., Elliptic functional differential equations and applications, Birkhauser, Basel–Boston–Berlin, 1997 | MR | Zbl

[9] Skubachevskii A. L., “Bifurcation of periodic solutions for nonlinear parabolic functional differential equations arising in optoelectronics”, Nonlinear Anal., 32:2 (1998), 261–278 | DOI | MR | Zbl