Spectral analysis of integrodifferential equations in a~Hilbert space
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), Tome 62 (2016), pp. 53-71

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the correct solvability of initial-value problems for abstract integrodifferential equations with unbounded operator coefficients in a Hilbert space. We do spectral analysis of operator-functions describing symbols of such equations. These equations are an abstract form of linear integrodifferential partial derivative equations arising in the viscoelasticity theory and having some other important applications. We establish the localization and the spectrum structure of operator-functions describing symbols of these equations.
@article{CMFD_2016_62_a3,
     author = {V. V. Vlasov and N. A. Rautian},
     title = {Spectral analysis of integrodifferential equations in {a~Hilbert} space},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {53--71},
     publisher = {mathdoc},
     volume = {62},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2016_62_a3/}
}
TY  - JOUR
AU  - V. V. Vlasov
AU  - N. A. Rautian
TI  - Spectral analysis of integrodifferential equations in a~Hilbert space
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2016
SP  - 53
EP  - 71
VL  - 62
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2016_62_a3/
LA  - ru
ID  - CMFD_2016_62_a3
ER  - 
%0 Journal Article
%A V. V. Vlasov
%A N. A. Rautian
%T Spectral analysis of integrodifferential equations in a~Hilbert space
%J Contemporary Mathematics. Fundamental Directions
%D 2016
%P 53-71
%V 62
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2016_62_a3/
%G ru
%F CMFD_2016_62_a3
V. V. Vlasov; N. A. Rautian. Spectral analysis of integrodifferential equations in a~Hilbert space. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), Tome 62 (2016), pp. 53-71. http://geodesic.mathdoc.fr/item/CMFD_2016_62_a3/