On some problems of hemodynamics on graphs
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), Tome 62 (2016), pp. 5-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, some problems for linearized equations of hemodynamics on simplest graphs are considered. Exact or analytic solutions of such problems are obtained.
@article{CMFD_2016_62_a0,
     author = {V. I. Bezyaev and N. Kh. Sadekov},
     title = {On some problems of hemodynamics on graphs},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {5--18},
     publisher = {mathdoc},
     volume = {62},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2016_62_a0/}
}
TY  - JOUR
AU  - V. I. Bezyaev
AU  - N. Kh. Sadekov
TI  - On some problems of hemodynamics on graphs
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2016
SP  - 5
EP  - 18
VL  - 62
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2016_62_a0/
LA  - ru
ID  - CMFD_2016_62_a0
ER  - 
%0 Journal Article
%A V. I. Bezyaev
%A N. Kh. Sadekov
%T On some problems of hemodynamics on graphs
%J Contemporary Mathematics. Fundamental Directions
%D 2016
%P 5-18
%V 62
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2016_62_a0/
%G ru
%F CMFD_2016_62_a0
V. I. Bezyaev; N. Kh. Sadekov. On some problems of hemodynamics on graphs. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), Tome 62 (2016), pp. 5-18. http://geodesic.mathdoc.fr/item/CMFD_2016_62_a0/

[1] N. V. Abakumov, etc., “Methods of mathematical modelling of the cardiovascular system”, Math. Model., 12:2 (2000), 106–117 | Zbl

[2] A. Ya. Bunicheva, etc., “Investigation of gravitational acceleration effect on blood flow parameters in vessels of greater circulation”, Math. Model., 24:7 (2012), 67–82 | Zbl

[3] V. B. Koshelev, etc., Mathematical Models of Quasi-one-dimensional Hemodynamics, MAKS Press, Moscow, 2010

[4] S. I. Mukhin, Mathematical Modelling of Hemodynamics, Doctoral Thesis, MSU, Moscow, 2008

[5] M. Kh. Numan El'sheykh, V. Zh. Sakbaev, “Laplace operators for the Schrödinger equation on graphs”, Proc. Moscow Inst. Phys. Tech., 6:2 (2014), 61–67 | MR

[6] Yu. V. Pokornyy, etc., Differential Equations on Geometric Graphs, Fizmatlit, Moscow, 2004

[7] B. L. Rozhdestvenskiy, N. N. Yanenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics, Nauka, Moscow, 1978

[8] V. Zh. Sakbaev, O. G. Smolyanov, “Dynamic of a quantum particle with discontinuous dependence of mass on position”, Rep. Russ. Acad. Sci., 433:3 (2010), 314–317 | MR | Zbl

[9] V. Zh. Sakbaev, O. G. Smolyanov, “Diffusion and quantum dynamics of graphs”, Rep. Russ. Acad. Sci., 451:2 (2013), 141–145 | DOI | Zbl

[10] A. N. Tikhonov, A. A. Samarskiy, Equations of Mathematical Physic, MSU, Moscow, 2004

[11] A. A. Tolchennikov, V. L. Chernyshev, A. I. Shafarevich, “Asymptotical properties and classic dynamical systems in quantum problems on singular spaces”, Nonlin. Dynamics, 6:3 (2010), 623–638

[12] V. L. Chernyshev, A. I. Shafarevich, “Quasiclassic spectrum of the Schrödinger operator on geometric graph”, Math. Notes, 82:4 (2007), 606–620 | DOI | MR | Zbl