Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2016_61_a5, author = {A. R. Hanalyev}, title = {On coercive solvability of parabolic equations with variable operator}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {164--181}, publisher = {mathdoc}, volume = {61}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2016_61_a5/} }
A. R. Hanalyev. On coercive solvability of parabolic equations with variable operator. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 61 (2016), pp. 164-181. http://geodesic.mathdoc.fr/item/CMFD_2016_61_a5/
[1] A. Ashyralyev, A. Khanalyev, “Coercive estimate in Hölder norms for parabolic equations with variable operator”, Modelling of mining processes for gas deposits and applied problems of theoretical gas-hydrodynamics, Ylym, Ashgabat, 1998, 154–162 (in Russian)
[2] M. A. Krasnosel'skiy, P. P. Zabreyko, E. I. Pustyl'nik, and P. E. Sobolevskiy, Integral Operators in Spaces of Summable Functions, Nauka, Moscow, 1966 (in Russian) | MR
[3] S. G. Kreyn, Linear Differential Equations in Banach Space, Nauka, Moscow, 1967 (in Russian) | MR
[4] S. G. Kreyn, M. I. Khazan, “Differential equations in Banach space”, Totals Sci. Tech. Ser. Math. Anal., 21, 1983, 130–264 (in Russian) | MR | Zbl
[5] P. E. Sobolevskiy, “On equations of parabolic type in a Banach space”, Proc. Moscow Math. Soc., 10, 1961, 297–350 (in Russian) | MR | Zbl
[6] P. E. Sobolevskiy, “Coercivity inequalities for abstract parabolic equations”, Rep. Acad. Sci. USSR, 157:1 (1964), 52–55 (in Russian) | MR
[7] P. E. Sobolevskiy, “On fractional norms generated by an unbounded operator in Banach space”, Progr. Math. Sci., 19:6 (1964), 219–222 (in Russian)
[8] V. A. Rudetskiy, Dep. VINITI No. 34-85, VGU, 1984, Rzhmat 751102, 1985 (in Russian)
[9] Ashyralyev A., Hanalyev A., Sobolevskii P. E., “Coercive solvability of the nonlocal boundary-value problem for parabolic differential equations”, Abstr. Appl. Anal., 6:1 (2001), 53–61 | DOI | MR | Zbl
[10] Ashyralyev A., Sobolevskii P. E., New difference schemes for partial differential equations, Birkhäuser, Basel–Boston–Berlin, 2004 | MR | Zbl