On coercive solvability of parabolic equations with variable operator
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 61 (2016), pp. 164-181

Voir la notice de l'article provenant de la source Math-Net.Ru

In a Banach space $E$, the Cauchy problem $$ v'(t)+A(t)v(t)=f(t)\quad (0\leq t\leq1),\qquad v(0)=v_0 $$ is considered for a differential equation with linear strongly positive operator $A(t)$ such that its domain $D=D(A(t))$ is everywhere dense in $E$ independently off $t$ and $A(t)$ generates an analytic semigroup $\exp\{-sA(t)\}$ ($s\geq0$). Under some natural assumptions on $A(t)$, we establish coercive solvability of the Cauchy problem in the Banach space $C_0^{\beta,\gamma}(E)$. We prove a stronger estimate of the solution compared to estimates known earlier, using weaker restrictions on $f(t)$ and $v_0$.
@article{CMFD_2016_61_a5,
     author = {A. R. Hanalyev},
     title = {On coercive solvability of parabolic equations with variable operator},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {164--181},
     publisher = {mathdoc},
     volume = {61},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2016_61_a5/}
}
TY  - JOUR
AU  - A. R. Hanalyev
TI  - On coercive solvability of parabolic equations with variable operator
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2016
SP  - 164
EP  - 181
VL  - 61
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2016_61_a5/
LA  - ru
ID  - CMFD_2016_61_a5
ER  - 
%0 Journal Article
%A A. R. Hanalyev
%T On coercive solvability of parabolic equations with variable operator
%J Contemporary Mathematics. Fundamental Directions
%D 2016
%P 164-181
%V 61
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2016_61_a5/
%G ru
%F CMFD_2016_61_a5
A. R. Hanalyev. On coercive solvability of parabolic equations with variable operator. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 61 (2016), pp. 164-181. http://geodesic.mathdoc.fr/item/CMFD_2016_61_a5/