Topological algebras of measurable and locally measurable operators
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 61 (2016), pp. 115-163

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we review the results on topological $*$-algebras $S(\mathcal M)$, $S(\mathcal M,\tau)$ and $LS(\mathcal M)$ of measurable, $\tau$-measurable, and locally measurable operators affiliated with the von Neumann algebra $\mathcal M$. Also we consider relations between these algebras for different classes of von Neumann algebras and establish the continuity of operator-valued functions with respect to local convergence in measure. We describe maximal commutative $*$-subalgebras of the algebra $LS(\mathcal M)$ as well.
@article{CMFD_2016_61_a4,
     author = {M. A. Muratov and V. I. Chilin},
     title = {Topological algebras of measurable and locally measurable operators},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {115--163},
     publisher = {mathdoc},
     volume = {61},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2016_61_a4/}
}
TY  - JOUR
AU  - M. A. Muratov
AU  - V. I. Chilin
TI  - Topological algebras of measurable and locally measurable operators
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2016
SP  - 115
EP  - 163
VL  - 61
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2016_61_a4/
LA  - ru
ID  - CMFD_2016_61_a4
ER  - 
%0 Journal Article
%A M. A. Muratov
%A V. I. Chilin
%T Topological algebras of measurable and locally measurable operators
%J Contemporary Mathematics. Fundamental Directions
%D 2016
%P 115-163
%V 61
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2016_61_a4/
%G ru
%F CMFD_2016_61_a4
M. A. Muratov; V. I. Chilin. Topological algebras of measurable and locally measurable operators. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 61 (2016), pp. 115-163. http://geodesic.mathdoc.fr/item/CMFD_2016_61_a4/