Abstract mixed boundary-value and spectral conjugation problems and their applications
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 61 (2016), pp. 67-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

Basing on the abstract Green formula, we study general approach to abstract boundary-value conjugation problems. We consider examples of some configurations of docked domains for conjugation problems using generalized Green formula for the Laplace operator. Also we consider spectral problems with two complex parameters: one of them can be treated as fixed and the other one as spectral. By means of the proposed general approach, we reduce these problems to the spectral problem for operator pencil with self-adjoint operator coefficients acting in Hilbert space and depending on two parameters.
@article{CMFD_2016_61_a2,
     author = {N. D. Kopachevskii and K. A. Radomirskaya},
     title = {Abstract mixed boundary-value and spectral conjugation problems and their applications},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {67--102},
     publisher = {mathdoc},
     volume = {61},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2016_61_a2/}
}
TY  - JOUR
AU  - N. D. Kopachevskii
AU  - K. A. Radomirskaya
TI  - Abstract mixed boundary-value and spectral conjugation problems and their applications
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2016
SP  - 67
EP  - 102
VL  - 61
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2016_61_a2/
LA  - ru
ID  - CMFD_2016_61_a2
ER  - 
%0 Journal Article
%A N. D. Kopachevskii
%A K. A. Radomirskaya
%T Abstract mixed boundary-value and spectral conjugation problems and their applications
%J Contemporary Mathematics. Fundamental Directions
%D 2016
%P 67-102
%V 61
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2016_61_a2/
%G ru
%F CMFD_2016_61_a2
N. D. Kopachevskii; K. A. Radomirskaya. Abstract mixed boundary-value and spectral conjugation problems and their applications. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 61 (2016), pp. 67-102. http://geodesic.mathdoc.fr/item/CMFD_2016_61_a2/

[1] M. S. Agranovich, Sobolev Spaces, Their Generalizations, and Elliptic Problems in Domains with Smooth and Lipschitz Boundary, MTsNMO, Moscow, 2013 (in Russian)

[2] M. S. Agranovich, G. A. Amosov, M. Levitin, “Spectral problems for the Lame system in smooth and nonsmooth domains with spectral parameter in the boundary-value condition”, Russ. J. Math. Phys., 6:3 (1999), 247–281 (in Russian) | MR | Zbl

[3] M. S. Agranovich, R. Menniken, “Spectral problems for the Helmholtz equation with spectral parameter in the boundary-value conditions on nonsmooth surface”, Math. Digest, 190:1 (1999), 29–68 (in Russian) | DOI | MR | Zbl

[4] V. G. Babskiy, M. Yu. Zhukov, N. D. Kopachevskiy, A. D. Myshkis, L. A. Slobozhanin, A. D. Tyuptsov, Methods of Solution for Problems of Hydromechanics in Weightlessness Conditions, Naukova Dumka, Kiev, 1992 (in Russian)

[5] V. G. Babskiy, N. D. Kopachevskiy, A. D. Myshkis, L. A. Slobozhanin, A. D. Tyuptsov, Hydromechanics in Weightlessness, Nauka, Moscow, 1976 (in Russian)

[6] V. I. Voytitskiy, “Abstract Stefan spectral problem”, Sci. Notes Tavricheskiy Nat. Vernadskiy Univ. Ser. Math. Mech. Inform. Cybern., 19:2 (2006), 20–28 (in Russian)

[7] V. I. Voytitskiy, “On spectral problems generated by the Stefan problem with Gibbs–Thomson conditions”, Nonlinear Bound. Value Probl., 17, 31–49 (in Russian) | MR

[8] V. I. Voytitskiy, N. D. Kopachevskiy, P. A. Starkov, “Multicomponent conjugation problems and auxiliary abstract boundary-value problems”, Contemp. Math. Fundam. Directions, 34, 2009, 5–44 (in Russian) | MR

[9] L. R. Volevich, S. G. Gindikin, Generalized functions and convolutions equations, Nauka, M., 1994 (in Russian) | MR

[10] V. I. Gorbachuk, “Dissipative boundary-value problems for elliptic differential equations”, Functional and Numerical Methods of Mathematical Physics, In-t matem. i mekhaniki, Naukova dumka, Kiev, 1998, 60–63 (in Russian)

[11] N. D. Kopachevskiy, “On abstract Green formula for triple of Hilbert spaces and its applications to the Stokes problem”, Tavricheskiy Bull. Inform. Math., 2 (2004), 52–80 (in Russian)

[12] N. D. Kopachevskiy, “Abstract Green formula for mixed boundary-value problems”, Sci. Notes Tavricheskiy Nat. Vernadskiy Univ. Ser. Math. Mech. Inform. Cybern., 20:2 (2007), 3–12 (in Russian)

[13] N. D. Kopachevskiy, “On abstract Green formula for mixed boundary-value problems and some its applications”, Spectral Evolution Probl., 21:1 (2011), 2–39 (in Russian)

[14] N. D. Kopachevskiy, “On abstract Green formula for a triple of Hilbert spaces and sesquilinear forms”, Contemp. Math. Fundam. Directions, 57, 2015, 71–107 (in Russian)

[15] N. D. Kopachevskiy, S. G. Kreyn, “Abstract Green formula for a triple of Hilbert spaces, abstract boundary-value and spectral problems”, Ukr. Math. Bull., 1:1 (2004), 69–97 (in Russian) | MR | Zbl

[16] N. D. Kopachevskiy, S. G. Kreyn, Ngo Zuy Kan, Operator Methods in Linear Hydrodynamics: Evolution and Spectral Problems, Nauka, Moscow, 1989 (in Russian) | MR

[17] N. D. Kopachevskiy, K. A. Radomirskaya, “Abstract mixed boundary-value conjugation problems”, Int. Sci. Conf. “Contemporary methods and problems of operator theory and harmonic analysis and their applications – V”, Rostov-na-Donu, 2015, 211 (in Russian)

[18] N. D. Kopachevskiy, K. A. Radomirskaya, “Abstract boundary-value and spectral conjugation problems”, XXVI Crimean Autumn Mathematical School-Symposium on Spectral and Evolution Problems, 2015, 52 (in Russian)

[19] S. G. Kreyn, “On oscillations of viscous fluid in a vessel”, Rep. Acad. Sci. USSR, 159:2 (1964), 262–265 (in Russian) | MR

[20] S. G. Kreyn, G. I. Laptev, “To the problem of motion of viscous fluid in an open vessel”, Funct. Anal. Appl., 2:1 (1968), 40–50 (in Russian) | MR | Zbl

[21] Zh.-L. Lions, E. Madzhenes, Nonhomogeneous Boundary-Value Problems and Their Applications, Mir, Moscow, 1971 (in Russian)

[22] Zh.-P. Oben, Approximate Solution of Elliptic Boundary-Value Problems, Mir, Moscow, 1977 | MR

[23] P. A. Starkov, “Operator approach to conjugation problems”, Sci. Notes Tavricheskiy Nat. Vernadskiy Univ. Ser. Math. Mech. Inform. Cybern., 15:2 (2002), 82–88 (in Russian)

[24] P. A. Starkov, “On basisness of eigenelements in conjugation problems”, Tavricheskiy Bull. Inform. Math., 2003, no. 1, 118–131 (in Russian) | Zbl

[25] P. A. Starkov, “Examplex of multicomponent conjugation problems”, Sci. Notes Tavricheskiy Nat. Vernadskiy Univ. Ser. Math. Mech. Inform. Cybern., 18:1 (2005), 89–94 (in Russian)

[26] Agranovich M. S., “Remarks on potential spaces and Besov spaces in a Lipschitz domain and on Whitney arrays on its boundary”, Russ. J. Math. Phys., 15:2 (2008), 146–155 | DOI | MR | Zbl

[27] Agranovich M. S., Sobolev spaces, their generalizations, and elliptic problems in smooth and lipschitz domains, Springer, Cham, 2015 | MR | Zbl

[28] Agranovich M. S., Katsenelenbanm B. Z., Sivov A. N., Voitovich N. N., Generalized method of eigenoscillations in difraction theory, Wiley-VCN, Berlin, 1999 | MR

[29] Aubin J.-P., “Abstract boundary-value operators and their adjoint”, Rend. Semin. Math. Univ. Padova, 43 (1970), 1–33 | MR | Zbl

[30] Babckii V. G., Kopachevskii N. D., Myshkis A. D., Slobozhanin L. A., Tyuptsov A. D., Low-gravity fluid mechanics, Springer, 1987 | MR

[31] Kopachevsky N. D., Krein S. G., Operator approach to linear problems of hydrodynamics, v. 1, Self-adjoint problems for an ideal fluid, Birkhauser, Basel–Boston–Berlin, 2001 | MR | Zbl

[32] Kopachevsky N. D., Krein S. G., Operator approach to linear problems of hydrodynamics, v. 2, Nonself-adjoint problems for viscous fluid, Birkhauser, Basel–Boston–Berlin, 2003 | MR | Zbl

[33] McLean W., Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cambridge, 2000 | MR | Zbl

[34] Rychkov V. S., “On restrictions and extensions of the Besov and Triebel–Lizorkin spaces with respect to Lipschitz domains”, J. Lond. Math. Soc., 60:1 (1999), 237–257 | DOI | MR | Zbl

[35] Showalter R. E., Hilbert space methods for partial differential equations, Southwest Texas State Univ., San Marcos, 1994 | MR | Zbl

[36] Voytitsky V. I., Kopachevsky N. D., “On the modified spectral Stefan problem and its abstract generalizations”, Modern analysis and applications, The Mark Krein centenary conference (Odessa, Ukraine, April 9–14, 2007), v. 2, Differential operators and mechanics. Papers based on invited talks at the international conference on modern analysis and applications, Birkhauser, Basel, 2009, 381–394 | MR | Zbl

[37] Voytitsky V. I., Kopachevsky N. D., Starkov P. A., “Multicomponent conjugation problems and auxiliary abstract boundary-value problems”, J. Math. Sci., 170:2 (2010), 131–172 | DOI | MR