Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2016_61_a1, author = {D. A. Zakora}, title = {Model of the {Oldroyd} compressible fluid}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {41--66}, publisher = {mathdoc}, volume = {61}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2016_61_a1/} }
D. A. Zakora. Model of the Oldroyd compressible fluid. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 61 (2016), pp. 41-66. http://geodesic.mathdoc.fr/item/CMFD_2016_61_a1/
[1] T. Ya. Azizov, I. S. Iokhvidov, Foundations of Theory of Linear Operators in Spaces with Indefinite Metrics, Nauka, Moscow, 1986 (in Russian) | MR
[2] T. Ya. Azizov, N. D. Kopachevskiy, L. D. Orlova, “Evolution and spectral problems generated by the problem of small movements of viscoelastic fluid”, Proc. Saint-Petersburg Math. Soc., 6, 1998, 5–33 (in Russian) | MR
[3] Yu. M. Berezanskiy, Expansion in Eigenfunctions of Self-Adjoint Operators, Naukova dumka, Kiev, 1965 (in Russian) | MR
[4] M. Sh. Birman, M. Z. Solomyak, “Asymptotics of spectra of differential equations”, Totals Sci. Tech. VINITI. Ser. Math. Anal., 14, 1977, 5–58 (in Russian) | MR | Zbl
[5] Dzh. A. Goldsteyn, Semigroups of Linear Operators and Their Applications, Vyshcha shkola, Kiev, 1989 (in Russian) | MR
[6] D. A. Zakora, “Operator approach to the Il'yushin model of viscoelastic body of parabolic type”, Contemp. Math. Fundam. Directions, 57, 2015, 31–64 (in Russian)
[7] V. G. Zvyagin, M. V. Turbin, “Investigation of initial-boundary value problems for Kelvin–Voigt mathematical models of motion of fluids”, Contemp. Math. Fundam. Directions, 31, 2009, 3–144 (in Russian) | MR
[8] T. Kato, Perturbation Theory for Linear Operators, Mir, Moscow, 1972 (in Russian) | MR
[9] N. D. Kopachevskiy, S. G. Kreyn, Ngo Zuy Kan, Operator Methods in Linear Hydrodynamics: Evolution and Spectral Problems, Nauka, Moscow, 1989 (in Russian) | MR
[10] S. G. Kreyn, Linear Differential Equations in Banach Space, Nauka, Moscow, 1967 (in Russian) | MR
[11] A. S. Markus, Introduction to Spectral Theory of Polynomial Operator Pencils, Shtiintsa, Kishinev, 1986 (in Russian) | MR
[12] A. S. Markus, V. I. Matsaev, “Theorem on comparison of spectra and spectral asymptotics for the M. V. Keldysh Pencil”, Math. Digest, 123(165):3 (1984), 391–406 (in Russian) | MR | Zbl
[13] A. I. Miloslavskiy, “Spectrum of small oscillation of viscoelastic fluid in open vessel”, Progr. Math. Sci., 44:4 (1989), 214 (in Russian)
[14] A. I. Miloslavskiy, “Spectrum of small oscillations of viscoelastic inheritance medium”, Rep. Acad. Sci. USSR, 309:3 (1989), 532–536 (in Russian) | MR
[15] S. G. Mikhlin, “Spectrum of the operator pencil from the elasticity theory”, Progr. Math. Sci., 28:3 (1973), 43–82 (in Russian) | MR | Zbl
[16] A. P. Oskolkov, “Initial-boundary value problems for equations of motion for Kelvin–Voigt and Oldroyd fluids”, Proc. Math. Inst. Russ. Acad. Sci., 179, 1989, 126–164 (in Russian) | MR | Zbl
[17] K. Rektoris, Variational Methods in Mathematical Physics and Technics, Mir, Moscow, 1985 (in Russian) | MR
[18] V. A. Solonnikov, “On general boundary-value problems for elliptic systems in the A. Douglis–L. Nirenberg sense”, Proc. Math. Inst. Russ. Acad. Sci., 92, 1966, 233–297 (in Russian) | MR | Zbl
[19] A. Freydental', Kh. Geyringer, Mathematical Theories of Nonelastic Continuous Medium, Fizmatgiz, Moscow, 1962 (in Russian)
[20] Birman M. Sh., Solomjak M. Z., Spectral theory of self-adjoint operators in Hilbert space, D. Reidel Publishing Company, Dordrecht–Boston–Lancaser–Tokyo, 1987 | MR
[21] Gohberg I., Goldberg S., Kaashoek M. A., Classes of linear operators, v. 1, Birkhäuser, Basel–Boston–Berlin, 1990 | MR | Zbl
[22] Grubb G., Geymonat G., “The essential spectrum of elliptic systems of mixed order”, Math. Ann., 227 (1977), 247–276 | DOI | MR | Zbl
[23] Kelvin (Thomson) W., “On the theory viscoelastic fluids”, Math. A Phys. Pap., 3 (1875), 27–84
[24] Kopachevsky N. D., Krein S. G., Operator approach to linear problems of hydrodynamics, v. 2, Nonself-adjoint problems for viscous fluids, Birkhäuser, Basel–Boston–Berlin, 2003 | MR | Zbl
[25] Maxwell J. C., “On the dynamical theory of gases”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 157 (1867), 49–88 | DOI
[26] Maxwell J. C., “On the dynamical theory of gases”, Philos. Mag., 35 (1868), 129–145
[27] Oldroyd J. G., “On the formulation of rheological equations of state”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 200 (1950), 523–541 | DOI | MR | Zbl
[28] Oldroyd J. G., “The elastic and viscous properties of emulsions and suspensions”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 218 (1953), 122–137 | DOI
[29] Pazy A., Semigroups of linear operators and applications to partial differential equations, Springer, New York, 1983 | MR | Zbl
[30] Voight W., “Uber die innere Reibung der fasten Korper, inslesondere der krystalle”, Gottinden Abh., 36:1 (1889), 3–47
[31] Voight W., “Uber innex Reibung faster Korper, insbesondere der Metalle”, Ann. Phys. U Chem., 47:9 (1892), 671–693 | DOI