Model of the Oldroyd compressible fluid
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 61 (2016), pp. 41-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, mathematical models of compressible viscoelastic Maxwell, Oldroyd, and Kelvin–Voigt fluids are derived. A model of rotating viscoelastic barotropic Oldroyd fluid is studied. A theorem on strong unique solvability of the corresponding initial-boundary value problem is proved. The spectral problem associated with such a system is studied. Results on the spectrum localization, essential and discrete spectra, and spectrum asymptotics are obtained. In the case where the system is in the weightlessness state and does not rotate, results on multiple completeness and basisness of a special system of elements are proved. In such a case, under condition of sufficiently large viscosity, expansion of the solution of the evolution problem with respect to a special system of elements is obtained.
@article{CMFD_2016_61_a1,
     author = {D. A. Zakora},
     title = {Model of the {Oldroyd} compressible fluid},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {41--66},
     publisher = {mathdoc},
     volume = {61},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2016_61_a1/}
}
TY  - JOUR
AU  - D. A. Zakora
TI  - Model of the Oldroyd compressible fluid
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2016
SP  - 41
EP  - 66
VL  - 61
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2016_61_a1/
LA  - ru
ID  - CMFD_2016_61_a1
ER  - 
%0 Journal Article
%A D. A. Zakora
%T Model of the Oldroyd compressible fluid
%J Contemporary Mathematics. Fundamental Directions
%D 2016
%P 41-66
%V 61
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2016_61_a1/
%G ru
%F CMFD_2016_61_a1
D. A. Zakora. Model of the Oldroyd compressible fluid. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 61 (2016), pp. 41-66. http://geodesic.mathdoc.fr/item/CMFD_2016_61_a1/

[1] T. Ya. Azizov, I. S. Iokhvidov, Foundations of Theory of Linear Operators in Spaces with Indefinite Metrics, Nauka, Moscow, 1986 (in Russian) | MR

[2] T. Ya. Azizov, N. D. Kopachevskiy, L. D. Orlova, “Evolution and spectral problems generated by the problem of small movements of viscoelastic fluid”, Proc. Saint-Petersburg Math. Soc., 6, 1998, 5–33 (in Russian) | MR

[3] Yu. M. Berezanskiy, Expansion in Eigenfunctions of Self-Adjoint Operators, Naukova dumka, Kiev, 1965 (in Russian) | MR

[4] M. Sh. Birman, M. Z. Solomyak, “Asymptotics of spectra of differential equations”, Totals Sci. Tech. VINITI. Ser. Math. Anal., 14, 1977, 5–58 (in Russian) | MR | Zbl

[5] Dzh. A. Goldsteyn, Semigroups of Linear Operators and Their Applications, Vyshcha shkola, Kiev, 1989 (in Russian) | MR

[6] D. A. Zakora, “Operator approach to the Il'yushin model of viscoelastic body of parabolic type”, Contemp. Math. Fundam. Directions, 57, 2015, 31–64 (in Russian)

[7] V. G. Zvyagin, M. V. Turbin, “Investigation of initial-boundary value problems for Kelvin–Voigt mathematical models of motion of fluids”, Contemp. Math. Fundam. Directions, 31, 2009, 3–144 (in Russian) | MR

[8] T. Kato, Perturbation Theory for Linear Operators, Mir, Moscow, 1972 (in Russian) | MR

[9] N. D. Kopachevskiy, S. G. Kreyn, Ngo Zuy Kan, Operator Methods in Linear Hydrodynamics: Evolution and Spectral Problems, Nauka, Moscow, 1989 (in Russian) | MR

[10] S. G. Kreyn, Linear Differential Equations in Banach Space, Nauka, Moscow, 1967 (in Russian) | MR

[11] A. S. Markus, Introduction to Spectral Theory of Polynomial Operator Pencils, Shtiintsa, Kishinev, 1986 (in Russian) | MR

[12] A. S. Markus, V. I. Matsaev, “Theorem on comparison of spectra and spectral asymptotics for the M. V. Keldysh Pencil”, Math. Digest, 123(165):3 (1984), 391–406 (in Russian) | MR | Zbl

[13] A. I. Miloslavskiy, “Spectrum of small oscillation of viscoelastic fluid in open vessel”, Progr. Math. Sci., 44:4 (1989), 214 (in Russian)

[14] A. I. Miloslavskiy, “Spectrum of small oscillations of viscoelastic inheritance medium”, Rep. Acad. Sci. USSR, 309:3 (1989), 532–536 (in Russian) | MR

[15] S. G. Mikhlin, “Spectrum of the operator pencil from the elasticity theory”, Progr. Math. Sci., 28:3 (1973), 43–82 (in Russian) | MR | Zbl

[16] A. P. Oskolkov, “Initial-boundary value problems for equations of motion for Kelvin–Voigt and Oldroyd fluids”, Proc. Math. Inst. Russ. Acad. Sci., 179, 1989, 126–164 (in Russian) | MR | Zbl

[17] K. Rektoris, Variational Methods in Mathematical Physics and Technics, Mir, Moscow, 1985 (in Russian) | MR

[18] V. A. Solonnikov, “On general boundary-value problems for elliptic systems in the A. Douglis–L. Nirenberg sense”, Proc. Math. Inst. Russ. Acad. Sci., 92, 1966, 233–297 (in Russian) | MR | Zbl

[19] A. Freydental', Kh. Geyringer, Mathematical Theories of Nonelastic Continuous Medium, Fizmatgiz, Moscow, 1962 (in Russian)

[20] Birman M. Sh., Solomjak M. Z., Spectral theory of self-adjoint operators in Hilbert space, D. Reidel Publishing Company, Dordrecht–Boston–Lancaser–Tokyo, 1987 | MR

[21] Gohberg I., Goldberg S., Kaashoek M. A., Classes of linear operators, v. 1, Birkhäuser, Basel–Boston–Berlin, 1990 | MR | Zbl

[22] Grubb G., Geymonat G., “The essential spectrum of elliptic systems of mixed order”, Math. Ann., 227 (1977), 247–276 | DOI | MR | Zbl

[23] Kelvin (Thomson) W., “On the theory viscoelastic fluids”, Math. A Phys. Pap., 3 (1875), 27–84

[24] Kopachevsky N. D., Krein S. G., Operator approach to linear problems of hydrodynamics, v. 2, Nonself-adjoint problems for viscous fluids, Birkhäuser, Basel–Boston–Berlin, 2003 | MR | Zbl

[25] Maxwell J. C., “On the dynamical theory of gases”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 157 (1867), 49–88 | DOI

[26] Maxwell J. C., “On the dynamical theory of gases”, Philos. Mag., 35 (1868), 129–145

[27] Oldroyd J. G., “On the formulation of rheological equations of state”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 200 (1950), 523–541 | DOI | MR | Zbl

[28] Oldroyd J. G., “The elastic and viscous properties of emulsions and suspensions”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 218 (1953), 122–137 | DOI

[29] Pazy A., Semigroups of linear operators and applications to partial differential equations, Springer, New York, 1983 | MR | Zbl

[30] Voight W., “Uber die innere Reibung der fasten Korper, inslesondere der krystalle”, Gottinden Abh., 36:1 (1889), 3–47

[31] Voight W., “Uber innex Reibung faster Korper, insbesondere der Metalle”, Ann. Phys. U Chem., 47:9 (1892), 671–693 | DOI