Elliptic $G$-operators on manifolds with isolated singularities
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 2, Tome 59 (2016), pp. 173-191.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study elliptic operators on manifolds with singularities such that a discrete group $G$ acts on the manifold. Following the standard elliptic theory approach, we define the Fredholm property of an operator by its principal symbol. For this problem, we prove that the symbol is a pair consisting of the symbol on the principal stratum (the inner symbol) and the symbol at the conical point (the conormal symbol). We establish the Fredholm property of elliptic elements.
@article{CMFD_2016_59_a7,
     author = {A. Yu. Savin and B. Yu. Sternin},
     title = {Elliptic $G$-operators on manifolds with isolated singularities},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {173--191},
     publisher = {mathdoc},
     volume = {59},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2016_59_a7/}
}
TY  - JOUR
AU  - A. Yu. Savin
AU  - B. Yu. Sternin
TI  - Elliptic $G$-operators on manifolds with isolated singularities
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2016
SP  - 173
EP  - 191
VL  - 59
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2016_59_a7/
LA  - ru
ID  - CMFD_2016_59_a7
ER  - 
%0 Journal Article
%A A. Yu. Savin
%A B. Yu. Sternin
%T Elliptic $G$-operators on manifolds with isolated singularities
%J Contemporary Mathematics. Fundamental Directions
%D 2016
%P 173-191
%V 59
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2016_59_a7/
%G ru
%F CMFD_2016_59_a7
A. Yu. Savin; B. Yu. Sternin. Elliptic $G$-operators on manifolds with isolated singularities. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 2, Tome 59 (2016), pp. 173-191. http://geodesic.mathdoc.fr/item/CMFD_2016_59_a7/

[1] M. S. Agranovich, M. I. Vishik, “Elliptic problems with a parameter and parabolic problems of general type”, Usp. mat. nauk, 19:3 (1964), 53–161 (in Russian) | MR | Zbl

[2] V. A. Kondratiev, “Boundary-value problems for elliptic equations in domains with conical and angle points”, Tr. Mosk. Mat. ob-va, 16, 1967, 209–292 (in Russian) | MR | Zbl

[3] V. E. Nazaykinskiy, A. Yu. Savin, B. Yu. Sternin, “Pseudodifferential operators on stratified manifolds. II”, Diff. uravn., 43:5 (2007), 685–696 (in Russian) | MR | Zbl

[4] B. Yu. Sternin, Quasi-Elliptic Operators on an Infinite Cylinder, MIEM, Moscow, 1972 (in Russian)

[5] B. Yu. Sternin, Elliptic Theory on Compact Manifolds with Singularities, MIEM, Moscow, 1974 (in Russian) | MR

[6] A. Yu. Savin, “On the symbol of nonlocal operators in Sobolev spaces”, Diff. uravn., 47:6 (2011), 890–893 (in Russian) | MR | Zbl

[7] Antonevich A., Belousov M., Lebedev A., Functional differential equations, Part 1, 2, v. II, $C^*$-applications, Longman, Harlow, 1998 | Zbl

[8] Antonevich A., Lebedev A., Functional differential equations, v. I, $C^*$-theory, Longman, Harlow, 1994 | Zbl

[9] Nazaikinskii V. E., Savin A. Yu., Schulze B.-W., Sternin B. Yu., Elliptic theory on singular manifolds, CRC-Press, Boca Raton, 2005 | MR

[10] Nazaikinskii V. E., Savin A. Yu., Sternin B. Yu., Elliptic theory and noncommutative geometry, Birkhäuser, Basel, 2008 | MR | Zbl

[11] Nazaikinskii V., Savin A., Sternin B., “Elliptic theory on manifolds with corners. I. Dual manifolds and pseudodifferential operators”, $C^*$-algebras and elliptic theory, v. II, Birkhäuser, Basel, 2008, 183–206 | DOI | MR | Zbl

[12] Pedersen G. K., $C^*$-Algebras and their automorphism groups, Academic Press, London–New York, 1979 | MR

[13] Savin A. Yu., Sternin B. Yu., “Uniformization of nonlocal elliptic operators and $KK$-theory”, Russ. J. Math. Phys., 20:3 (2013), 345–359 | DOI | MR | Zbl

[14] Savin A. Yu., Sternin B. Yu., “Elliptic theory for operators associated with diffeomorphisms of smooth manifolds”, Pseudo-differential operators, generalized functions and asymptotics, Selected papers of the 8th ISAAC congress (Moscow, Russia, August 22–27, 2011), Birkhäuser, Basel, 2013, 1–26 | DOI | MR | Zbl

[15] Savin A. Yu., Sternin B. Yu., “Index of elliptic operators for diffeomorphisms of manifolds”, J. Noncommut. Geom., 8:3 (2014), 695–734 | DOI | MR | Zbl