On stability of perturbed semigroups in partially ordered Banach spaces
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 2, Tome 59 (2016), pp. 97-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove necessary and sufficient conditions for stability of perturbed semigroups of linear operators in Banach spaces with cones and consider some examples of using these conditions. In particular, we consider an example where the boundary-value problem is perturbed by a linear operator with delayed argument and establish conditions of stability for such a perturbed semigroup.
@article{CMFD_2016_59_a4,
     author = {M. I. Kamenskii and I. M. Gudoshnikov},
     title = {On stability of perturbed semigroups in partially ordered {Banach} spaces},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {97--118},
     publisher = {mathdoc},
     volume = {59},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2016_59_a4/}
}
TY  - JOUR
AU  - M. I. Kamenskii
AU  - I. M. Gudoshnikov
TI  - On stability of perturbed semigroups in partially ordered Banach spaces
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2016
SP  - 97
EP  - 118
VL  - 59
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2016_59_a4/
LA  - ru
ID  - CMFD_2016_59_a4
ER  - 
%0 Journal Article
%A M. I. Kamenskii
%A I. M. Gudoshnikov
%T On stability of perturbed semigroups in partially ordered Banach spaces
%J Contemporary Mathematics. Fundamental Directions
%D 2016
%P 97-118
%V 59
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2016_59_a4/
%G ru
%F CMFD_2016_59_a4
M. I. Kamenskii; I. M. Gudoshnikov. On stability of perturbed semigroups in partially ordered Banach spaces. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 2, Tome 59 (2016), pp. 97-118. http://geodesic.mathdoc.fr/item/CMFD_2016_59_a4/

[1] Yu. L. Daletskij, S. G. Krejn, Stability of Solutions of Differential Equations in Banach Space, Nauka, Moscow, 1970 (in Russian) | MR

[2] L. V. Kantorovich, G. P. Akilov, Functional Analysis, Nauka, Moscow, 1977 (in Russian) | MR

[3] T. Kato, Perturbation Theory for Linear Operators, Mir, Moscow, 1972 (in Russian) | MR

[4] A. N. Kolmogorov, S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, 7th ed., Fizmatlit, Moscow, 2004 (in Russian) | MR

[5] M. A. Krasnosel'skij, Positive Solutions of Operator Equations, GIFML, Moscow, 1962 (in Russian) | MR

[6] M. A. Krasnosel'skij, P. P. Zabreyko, E. I. Pustyl'nik, P. E. Sobolevskij, Integral Operators is Spaces of Summable Functions, Nauka, Moscow, 1966 (in Russian) | MR

[7] S. G. Krejn, Linear Equations in Banach Space, Nauka, Moscow, 1971 (in Russian) | MR

[8] M. G. Kreyn, M. A. Rutman, “Linear operators preserving an invariant cone in a Banach space”, Usp. mat. nauk, 3:1(23) (1948), 3–95 (in Russian) | MR | Zbl

[9] M. A. Naymark, Linear Differential Operators, Nauka, Moscow, 1969 (in Russian) | MR

[10] E. Hille, R. Phillips, Functional Analysis and Semigroups, Inostrannaya literatura, Moscow, 1962 (in Russian) | MR

[11] Cooke R., Infinite matrices and sequence spaces, McMillan and Co. Ltd., London, 1950 | MR

[12] Engel K.-J., Nagel R., One-parameter semigroups for linear evolution equations, Springer, New York, 2000 | MR | Zbl

[13] Pazy A., Semigroups of linear operators and applications to partial differential equations, Springer, New York, 1983 | MR | Zbl

[14] Shivakumar P. N., Sivakumar K. C., “A review of infinite matrices and their applications”, Linear Algebra Appl., 430 (2009), 976–998 | DOI | MR | Zbl

[15] Shivakumar P. N., Williams J. J., Rudraiah N., “Eigenvalues for infinite matrices”, Linear Algebra Appl., 96 (1987), 35–63 | DOI | MR | Zbl