On the stabilization rate of solutions of the Cauchy problem for a~parabolic equation with lower-order terms
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 2, Tome 59 (2016), pp. 53-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a parabolic equation in the half-space $\overline D=\mathbb R^N\times[0,\infty)$, $N\geqslant3$, we consider the Cauchy problem \begin{gather*} L_1u\equiv Lu+c(x,t)u-u_t=0,\quad (x,t)\in D,\\ u(x,0)=u_0(x),\quad x\in\mathbb R^N. \end{gather*} Depending on estimates on the coefficient $c(x,t),$ we establish power or exponential rate of stabilization of solutions of the Cauchy problem равномерно по $x$ на каждом компакте $K$ в $\mathbb R^N$ для произвольной ограниченной непрерывной в $\mathbb R^N$ начальной функции $u_0(x)$.
@article{CMFD_2016_59_a2,
     author = {V. N. Denisov},
     title = {On the stabilization rate of solutions of the {Cauchy} problem for a~parabolic equation with lower-order terms},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {53--73},
     publisher = {mathdoc},
     volume = {59},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2016_59_a2/}
}
TY  - JOUR
AU  - V. N. Denisov
TI  - On the stabilization rate of solutions of the Cauchy problem for a~parabolic equation with lower-order terms
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2016
SP  - 53
EP  - 73
VL  - 59
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2016_59_a2/
LA  - ru
ID  - CMFD_2016_59_a2
ER  - 
%0 Journal Article
%A V. N. Denisov
%T On the stabilization rate of solutions of the Cauchy problem for a~parabolic equation with lower-order terms
%J Contemporary Mathematics. Fundamental Directions
%D 2016
%P 53-73
%V 59
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2016_59_a2/
%G ru
%F CMFD_2016_59_a2
V. N. Denisov. On the stabilization rate of solutions of the Cauchy problem for a~parabolic equation with lower-order terms. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 2, Tome 59 (2016), pp. 53-73. http://geodesic.mathdoc.fr/item/CMFD_2016_59_a2/

[1] E. Ayns, Ordinary Differential Equations, Faktorial Press, Moscow, 2005 (in Russian)

[2] V. I. Bogachev, N. V. Krylov, M. Rekner, S. V. Shaposhnikov, Fokker–Planck–Kolmogorov Equations, NITs Regulyarnaya i khaoticheskaya dinamika, Moscow–Izhevsk, 2013 (in Russian)

[3] G. Vatson, Bessel Functions Theory, v. 1, Inostrannaya literatura, Moscow, 1949 (in Russian)

[4] Guschin A. K., “Nekotorye otsenki reshenii kraevykh zadach dlya uravneniya teploprovodnosti v neogranichennoi oblasti”, Tr. MIAN, 91, 1967, 5–18 (in Russian) | MR | Zbl

[5] A. K. Gushchin, “On stabilization of solutions of a parabolic equation”, Tr. MIAN, 103, 1968, 51–57 (in Russian) | MR | Zbl

[6] A. K. Gushchin, “On the stabilization rate of solutions of the boundary-value problem for a parabolic equation”, Sib. mat. zh., 10:1 (1969), 43–57 (in Russian)

[7] V. N. Denisov, “On the stabilization of solutions of the Cauchy problem for a parabolic equation with a lower-order term”, Diff. uravn., 39:4 (2003), 506–515 (in Russian) | MR | Zbl

[8] V. N. Denisov, “On the behavior of solutions of parabolic equations at large time values”, Usp. mat. nauk, 60:4 (2005), 145–212 (in Russian) | DOI | MR | Zbl

[9] V. N. Denisov, “Sufficient conditions for stabilization of solutions of the Cauchy problem for a nondivergent parabolic equation with lower-order terms”, Sovrem. mat. Fundam. napravl., 36, 2010, 61–71 (in Russian) | MR | Zbl

[10] V. N. Denisov, “Stabilization of solutions of the Cauchy problem for a nondivergent parabolic equation”, Sovrem. mat. i ee prilozh., 78 (2012), 17–49 (in Russian)

[11] A. M. Il'in, A. S. Kalashnikov, O. A. Oleynik, “Linear second-order equations of parabolic type”, Tr. sem. im. I. G. Petrovskogo, 17, 2001, 9–193 (in Russian) | MR

[12] L. D. Kudryavtsev, Mathematical Analysis, v. 1, Vysshaya shkola, Moscow, 1970 (in Russian)

[13] Dzh. Sansone, Ordinary Differential Equations, v. 1, Inostrannaya literatura, Moscow, 1953 (in Russian)

[14] M. V. Fedoryuk, Ordinary Differential Equations, Nauka, Moscow, 1985 (in Russian) | MR

[15] A. Fridman, Partial Derivative Equations of Parabolic Type, Mir, Moscow, 1968 (in Russian)

[16] Marić V., Regular variation and differential equations, Springer, Berlin, 2000 | MR | Zbl

[17] Marić V., Tomić M., “On Liouville Green (WKB) approximation for second order linear differential equations”, Differ. Integral Equ., 1:3 (1988), 299–304 | MR | Zbl

[18] Meyers N., Serrin J., “The exterior Dirichlet problem for second order elliptic partial differential equations”, J. Math. Mech., 9:4 (1960), 513–538 | MR | Zbl