Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2016_59_a0, author = {A. A. Amosov}, title = {Nonstationary problem of complex heat transfer in a~system of semitransparent bodies with radiation diffuse reflection and refraction boundary-value conditions}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {5--34}, publisher = {mathdoc}, volume = {59}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2016_59_a0/} }
TY - JOUR AU - A. A. Amosov TI - Nonstationary problem of complex heat transfer in a~system of semitransparent bodies with radiation diffuse reflection and refraction boundary-value conditions JO - Contemporary Mathematics. Fundamental Directions PY - 2016 SP - 5 EP - 34 VL - 59 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2016_59_a0/ LA - ru ID - CMFD_2016_59_a0 ER -
%0 Journal Article %A A. A. Amosov %T Nonstationary problem of complex heat transfer in a~system of semitransparent bodies with radiation diffuse reflection and refraction boundary-value conditions %J Contemporary Mathematics. Fundamental Directions %D 2016 %P 5-34 %V 59 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2016_59_a0/ %G ru %F CMFD_2016_59_a0
A. A. Amosov. Nonstationary problem of complex heat transfer in a~system of semitransparent bodies with radiation diffuse reflection and refraction boundary-value conditions. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 2, Tome 59 (2016), pp. 5-34. http://geodesic.mathdoc.fr/item/CMFD_2016_59_a0/
[1] G. V. Grenkin, A. Yu. Chebotarev, “A nonstationary problem of complex heat transfer”, Comput. Math. Math. Phys., 54:11 (2014), 1737–1747 | DOI | DOI | MR | Zbl
[2] A. E. Kovtanyuk, A. Yu. Chebotarev, “Steady-state problem of complex heat transfer”, Comput. Math. Math. Phys., 54:4 (2014), 719–726 | DOI | DOI | MR | Zbl
[3] A. E. Kovtanyuk, A. Yu. Chebotarev, “Stady-state problem of free convection with radiative heat transfer”, Diff. Uravn., 50:12 (2014), 1590 (in Russian) | DOI | MR | Zbl
[4] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967 (in Russian) | MR
[5] V. P. Mikhajlov, Partial Differential Equations, Nauka, Moscow, 1976 (in Russian) | MR
[6] Agoshkov V. I., Boundary value problems for transport equations: functional spaces, variational statements, regularity of solutions, Birkhauser, Boston–Basel–Berlin, 1998 | MR
[7] Amosov A. A., “The solvability of a problem of radiation heat transfer”, Soviet Phys. Dokl., 24:4 (1979), 261–262 | MR
[8] Amosov A. A., “The limit connection between two problems of radiation heat transfer”, Soviet Phys. Dokl., 24:6 (1979), 439–441 | MR
[9] Amosov A. A., “Stationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties depending on radiation frequency”, J. Math. Sci. (N.Y.), 164:3 (2010), 309–344 | DOI | MR | Zbl
[10] Amosov A. A., “Nonstationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties depending on the radiation frequency”, J. Math. Sci. (N.Y.), 165:1 (2010), 1–41 | DOI | MR | Zbl
[11] Amosov A. A., “Boundary value problem for the radiation transfer equation with reflection and refraction conditions”, J. Math. Sci. (N.Y.), 191:2 (2013), 101–149 | DOI | MR | Zbl
[12] Amosov A. A., “Boundary value problem for the radiation transfer equation with diffuse reflection and refraction conditions”, J. Math. Sci. (N.Y.), 193:2 (2013), 151–176 | DOI | MR | Zbl
[13] Amosov A. A., “Some properties of boundary value problem for radiative transfer equation with diffuse reflection and refraction conditions”, J. Math. Sci. (N.Y.), 207:2 (2015), 118–141 | DOI | MR | Zbl
[14] Cessenat M., “Théorèmes de trace $L^p$ pour des espaces de fonctions de la neutronique”, C. R. Acad. Sci., Paris Sér. I, 299 (1984), 831–834 | MR | Zbl
[15] Cessenat M., “Théorèmes de trace pour des espaces de fonctions de la neutronique”, C. R. Acad. Sci. Paris Sér. I, 300 (1985), 89–92 | MR | Zbl
[16] Dautray R., Lions J.-L., Mathematical analysis and numerical methods for science and technology, v. 6, Evolution problems II, Springer, Berlin, 2000
[17] Druet P.-E., “Weak solutions to a stationary heat equation with nonlocal radiation boundary condition and right-hand side in $L_p$ ($p\ge1$)”, Math. Methods Appl. Sci., 32:32 (2009), 135–166 | DOI | MR | Zbl
[18] Druet P.-E., “Existence for the stationary MHD equations coupled to heat transfer with nonlocal radiation effects”, Czechoslovak Math. J., 59 (2009), 791–825 | DOI | MR | Zbl
[19] Druet P.-E., “Existence of weak solution to time-dependent MHD equations coupled to heat transfer with nonlocal radiation boundary conditions”, Nonlinear Anal. Real World Appl., 10 (2009), 2914–2936 | DOI | MR | Zbl
[20] Druet P.-E., “Weak solutions to a time-dependent heat equation with nonlocal radiation boundary condition and arbitrary $p$-summable right-hand side”, Appl. Math., 55:2 (2010), 111–149 | DOI | MR | Zbl
[21] Gilbarg D., Trudinger N., Elliptic partial differential equations of second order, Springer, Berlin, 1983 | MR | Zbl
[22] Kelley C. T., “Existence and uniqueness of solutions of nonlinear systems of conductive-radiative heat transfer equations”, Transport Theory Statist. Phys., 25:2 (1996), 249–260 | DOI | MR | Zbl
[23] Kovtanyuk A. E., Chebotarev A. Yu., Botkin N. D., “Unique solvability of a steady-state complex heat transfer model”, Commun. Nonlinear Sci. Numer. Simul., 20:3 (2015), 776–784 | DOI | MR | Zbl
[24] Kovtanyuk A. E., Chebotarev A. Yu., Botkin N. D., Hoffmann K.-H., “The unique solvability of a complex 3D heat transfer problem”, J. Math. Anal. Appl., 409 (2014), 808–815 | DOI | MR | Zbl
[25] Křižek M., Liu L., “On a comparison principle for a quasilinear elliptic boundary value problem of a nonmonotone type”, Appl. Math., 24:1 (1996), 97–107 | MR
[26] Laitinen M. T., “Asymptotic analysis of conductive-radiative heat transfer”, Asymptot. Anal., 29 (2002), 323–342 | MR | Zbl
[27] Laitinen M. T., Tiihonen T., “Integro-differential equation modelling heat transfer in conducting, radiating and semitransparent materials”, Math. Methods Appl. Sci., 21 (1998), 375–392 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[28] Laitinen M., Tiihonen T., “Conductive-radiative heat transfer in grey materials”, Quart. Appl. Math., 59 (2001), 737–768 | MR | Zbl
[29] Modest F. M., Radiative heat transfer, Academic Press, Amsterdam, etc., 2003
[30] Necati Özişik M., Radiative transfer and interactions with conduction and convection, Willey Sons, New York, etc., 1973
[31] Pinnau R., “Analysis of optimal boundary control for radiative heat transfer modelled by $SP_1$ system”, Commun. Math. Sci., 5:4 (2007), 951–969 | DOI | MR | Zbl
[32] Siegel R., Howell J. R., Thermal radiation heat transfer, CRC Press, New York–London, 2001
[33] Sparrow E. M., Cess R. D., Radiation heat transfer, Hemisphere Pub. Corp., New York, 1978