Nonstationary problem of complex heat transfer in a~system of semitransparent bodies with radiation diffuse reflection and refraction boundary-value conditions
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 2, Tome 59 (2016), pp. 5-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a nonstationary initial-boundary value problem describing complex (radiative-conductive) heat transfer in a system of semitransparent bodies. To describe radiation propagation, we use the transport equation with radiation diffuse reflection and refraction boundary-value conditions. We take into account that the radiation intensity and optical properties of bodies depend on the radiation frequency. The unique solvability of a weak solution is established. The comparison theorem is proved. A priori estimates of a weak solution are obtained as well as its regularity.
@article{CMFD_2016_59_a0,
     author = {A. A. Amosov},
     title = {Nonstationary problem of complex heat transfer in a~system of semitransparent bodies with radiation diffuse reflection and refraction boundary-value conditions},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {5--34},
     publisher = {mathdoc},
     volume = {59},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2016_59_a0/}
}
TY  - JOUR
AU  - A. A. Amosov
TI  - Nonstationary problem of complex heat transfer in a~system of semitransparent bodies with radiation diffuse reflection and refraction boundary-value conditions
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2016
SP  - 5
EP  - 34
VL  - 59
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2016_59_a0/
LA  - ru
ID  - CMFD_2016_59_a0
ER  - 
%0 Journal Article
%A A. A. Amosov
%T Nonstationary problem of complex heat transfer in a~system of semitransparent bodies with radiation diffuse reflection and refraction boundary-value conditions
%J Contemporary Mathematics. Fundamental Directions
%D 2016
%P 5-34
%V 59
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2016_59_a0/
%G ru
%F CMFD_2016_59_a0
A. A. Amosov. Nonstationary problem of complex heat transfer in a~system of semitransparent bodies with radiation diffuse reflection and refraction boundary-value conditions. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 2, Tome 59 (2016), pp. 5-34. http://geodesic.mathdoc.fr/item/CMFD_2016_59_a0/

[1] G. V. Grenkin, A. Yu. Chebotarev, “A nonstationary problem of complex heat transfer”, Comput. Math. Math. Phys., 54:11 (2014), 1737–1747 | DOI | DOI | MR | Zbl

[2] A. E. Kovtanyuk, A. Yu. Chebotarev, “Steady-state problem of complex heat transfer”, Comput. Math. Math. Phys., 54:4 (2014), 719–726 | DOI | DOI | MR | Zbl

[3] A. E. Kovtanyuk, A. Yu. Chebotarev, “Stady-state problem of free convection with radiative heat transfer”, Diff. Uravn., 50:12 (2014), 1590 (in Russian) | DOI | MR | Zbl

[4] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967 (in Russian) | MR

[5] V. P. Mikhajlov, Partial Differential Equations, Nauka, Moscow, 1976 (in Russian) | MR

[6] Agoshkov V. I., Boundary value problems for transport equations: functional spaces, variational statements, regularity of solutions, Birkhauser, Boston–Basel–Berlin, 1998 | MR

[7] Amosov A. A., “The solvability of a problem of radiation heat transfer”, Soviet Phys. Dokl., 24:4 (1979), 261–262 | MR

[8] Amosov A. A., “The limit connection between two problems of radiation heat transfer”, Soviet Phys. Dokl., 24:6 (1979), 439–441 | MR

[9] Amosov A. A., “Stationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties depending on radiation frequency”, J. Math. Sci. (N.Y.), 164:3 (2010), 309–344 | DOI | MR | Zbl

[10] Amosov A. A., “Nonstationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties depending on the radiation frequency”, J. Math. Sci. (N.Y.), 165:1 (2010), 1–41 | DOI | MR | Zbl

[11] Amosov A. A., “Boundary value problem for the radiation transfer equation with reflection and refraction conditions”, J. Math. Sci. (N.Y.), 191:2 (2013), 101–149 | DOI | MR | Zbl

[12] Amosov A. A., “Boundary value problem for the radiation transfer equation with diffuse reflection and refraction conditions”, J. Math. Sci. (N.Y.), 193:2 (2013), 151–176 | DOI | MR | Zbl

[13] Amosov A. A., “Some properties of boundary value problem for radiative transfer equation with diffuse reflection and refraction conditions”, J. Math. Sci. (N.Y.), 207:2 (2015), 118–141 | DOI | MR | Zbl

[14] Cessenat M., “Théorèmes de trace $L^p$ pour des espaces de fonctions de la neutronique”, C. R. Acad. Sci., Paris Sér. I, 299 (1984), 831–834 | MR | Zbl

[15] Cessenat M., “Théorèmes de trace pour des espaces de fonctions de la neutronique”, C. R. Acad. Sci. Paris Sér. I, 300 (1985), 89–92 | MR | Zbl

[16] Dautray R., Lions J.-L., Mathematical analysis and numerical methods for science and technology, v. 6, Evolution problems II, Springer, Berlin, 2000

[17] Druet P.-E., “Weak solutions to a stationary heat equation with nonlocal radiation boundary condition and right-hand side in $L_p$ ($p\ge1$)”, Math. Methods Appl. Sci., 32:32 (2009), 135–166 | DOI | MR | Zbl

[18] Druet P.-E., “Existence for the stationary MHD equations coupled to heat transfer with nonlocal radiation effects”, Czechoslovak Math. J., 59 (2009), 791–825 | DOI | MR | Zbl

[19] Druet P.-E., “Existence of weak solution to time-dependent MHD equations coupled to heat transfer with nonlocal radiation boundary conditions”, Nonlinear Anal. Real World Appl., 10 (2009), 2914–2936 | DOI | MR | Zbl

[20] Druet P.-E., “Weak solutions to a time-dependent heat equation with nonlocal radiation boundary condition and arbitrary $p$-summable right-hand side”, Appl. Math., 55:2 (2010), 111–149 | DOI | MR | Zbl

[21] Gilbarg D., Trudinger N., Elliptic partial differential equations of second order, Springer, Berlin, 1983 | MR | Zbl

[22] Kelley C. T., “Existence and uniqueness of solutions of nonlinear systems of conductive-radiative heat transfer equations”, Transport Theory Statist. Phys., 25:2 (1996), 249–260 | DOI | MR | Zbl

[23] Kovtanyuk A. E., Chebotarev A. Yu., Botkin N. D., “Unique solvability of a steady-state complex heat transfer model”, Commun. Nonlinear Sci. Numer. Simul., 20:3 (2015), 776–784 | DOI | MR | Zbl

[24] Kovtanyuk A. E., Chebotarev A. Yu., Botkin N. D., Hoffmann K.-H., “The unique solvability of a complex 3D heat transfer problem”, J. Math. Anal. Appl., 409 (2014), 808–815 | DOI | MR | Zbl

[25] Křižek M., Liu L., “On a comparison principle for a quasilinear elliptic boundary value problem of a nonmonotone type”, Appl. Math., 24:1 (1996), 97–107 | MR

[26] Laitinen M. T., “Asymptotic analysis of conductive-radiative heat transfer”, Asymptot. Anal., 29 (2002), 323–342 | MR | Zbl

[27] Laitinen M. T., Tiihonen T., “Integro-differential equation modelling heat transfer in conducting, radiating and semitransparent materials”, Math. Methods Appl. Sci., 21 (1998), 375–392 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[28] Laitinen M., Tiihonen T., “Conductive-radiative heat transfer in grey materials”, Quart. Appl. Math., 59 (2001), 737–768 | MR | Zbl

[29] Modest F. M., Radiative heat transfer, Academic Press, Amsterdam, etc., 2003

[30] Necati Özişik M., Radiative transfer and interactions with conduction and convection, Willey Sons, New York, etc., 1973

[31] Pinnau R., “Analysis of optimal boundary control for radiative heat transfer modelled by $SP_1$ system”, Commun. Math. Sci., 5:4 (2007), 951–969 | DOI | MR | Zbl

[32] Siegel R., Howell J. R., Thermal radiation heat transfer, CRC Press, New York–London, 2001

[33] Sparrow E. M., Cess R. D., Radiation heat transfer, Hemisphere Pub. Corp., New York, 1978