On feedback-principle control for systems with aftereffect under incomplete phase-coordinate data
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 1, Tome 58 (2015), pp. 111-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a nonlinear system of differential equations with aftereffect, two mutually complement game minimax (maximin) problems for the quality functional are considered. Assuming that a part of phase coordinates of the system is measured (with error) sufficiently frequently, we provide solving algorithms that are stable with respect to the information noise and computational errors. The proposed algorithms are based on the Krasovskii extremal translation principle.
@article{CMFD_2015_58_a6,
     author = {V. S. Kublanov and V. I. Maksimov},
     title = {On feedback-principle control for systems with aftereffect under incomplete phase-coordinate data},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {111--127},
     publisher = {mathdoc},
     volume = {58},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2015_58_a6/}
}
TY  - JOUR
AU  - V. S. Kublanov
AU  - V. I. Maksimov
TI  - On feedback-principle control for systems with aftereffect under incomplete phase-coordinate data
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2015
SP  - 111
EP  - 127
VL  - 58
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2015_58_a6/
LA  - ru
ID  - CMFD_2015_58_a6
ER  - 
%0 Journal Article
%A V. S. Kublanov
%A V. I. Maksimov
%T On feedback-principle control for systems with aftereffect under incomplete phase-coordinate data
%J Contemporary Mathematics. Fundamental Directions
%D 2015
%P 111-127
%V 58
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2015_58_a6/
%G ru
%F CMFD_2015_58_a6
V. S. Kublanov; V. I. Maksimov. On feedback-principle control for systems with aftereffect under incomplete phase-coordinate data. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 1, Tome 58 (2015), pp. 111-127. http://geodesic.mathdoc.fr/item/CMFD_2015_58_a6/

[1] Blizorukova M. S., Maksimov V. I., “Ob odnoi zadache upravleniya pri nepolnoi informatsii”, Avtomatika i telemekhanika, 2006, no. 3, 131–142 | MR | Zbl

[2] Krasovskii N. N., Kotelnikova A. N., “Stokhasticheskii povodyr dlya ob'ekta s posledeistviem v pozitsionnoi differentsialnoi igre”, Tr. In-ta matem. mekh. UrO RAN, 17, no. 2, 2011, 97–104

[3] Krasovskii N. N., Osipov Yu. S., “Lineinye differentsialno-raznostnye igry”, Dokl. AN SSSR, 197:4 (1971), 777–780 | MR

[4] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR

[5] Kryazhimskii A. V., “Chislovaya kodirovka diskretizovannykh upravlenii i approksimatsionnyi metricheskii kriterii razreshimosti igrovoi zadachi navedeniya”, Tr. In-ta matem. mekh. UrO RAN, 17, no. 2, 2011, 105–124

[6] Kryazhimskii A. V., Maksimov V. I., “O sochetanii protsessov rekonstruktsii i garantiruyuschego upravleniya”, Avtomatika i telemekhanika, 2013, no. 8, 5–21 | MR | Zbl

[7] Kryazhimskii A. V., Maksimov V. I., “Approksimatsiya lineinykh differentsialno-raznostnykh igr”, Prikl. mat. mekh., 42:2 (1979), 202–209 | MR

[8] Lukoyanov N. Yu., Funktsionalnye uravneniya Gamiltona–Yakobi i zadachi upravleniya s nasledstvennoi informatsiei, UrFU, Ekaterinburg, 2011

[9] Osipov Yu. S., “Differentsialnye igry sistem s posledeistviem”, Dokl. AN SSSR, 196:4 (1971), 779–782 | Zbl

[10] Osipov Yu. S., “Pakety programm: podkhod k resheniyu zadach pozitsionnogo upravleniya s nepolnoi informatsiei”, Usp. mat. nauk, 61:4 (2006), 25–76 | DOI | MR | Zbl

[11] Osipov Yu. S., Izbrannye trudy, MGU, M., 2009

[12] Osipov Yu. S., Kryazhimskii A. V., Maksimov V. I., Metody dinamicheskogo vosstanovleniya vkhodov upravlyaemykh sistem, UrO RAN, Ekaterinburg, 2011

[13] Patsko V. S., Poverkhnosti pereklyucheniya v lineinykh differentsialnykh igrakh., Preprint, In-t matematiki i mekhaniki UrO RAN, 2004

[14] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981 | MR

[15] Ushakov V. N., “K zadache postroeniya stabilnykh mostov v differentsirovannoi igre sblizheniya-ukloneniya”, Izv. AN SSSR. Tekhn. kibern., 1980, no. 4, 29–36 | MR | Zbl

[16] Osipov Yu. S., Kryazhimskii A. V., Inverse problems for ordinary differential equations: dynamical solutions, Gordon and Breach, Basel, 1995 | MR | Zbl

[17] Subbotina N. N., “The method of characteristics for Hamilton–Jacobi equation and its applications in dynamical opimization”, Modern Math. Appl., 20 (2004), 2955–3091 | MR