On feedback-principle control for systems with aftereffect under incomplete phase-coordinate data
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 1, Tome 58 (2015), pp. 111-127

Voir la notice de l'article provenant de la source Math-Net.Ru

For a nonlinear system of differential equations with aftereffect, two mutually complement game minimax (maximin) problems for the quality functional are considered. Assuming that a part of phase coordinates of the system is measured (with error) sufficiently frequently, we provide solving algorithms that are stable with respect to the information noise and computational errors. The proposed algorithms are based on the Krasovskii extremal translation principle.
@article{CMFD_2015_58_a6,
     author = {V. S. Kublanov and V. I. Maksimov},
     title = {On feedback-principle control for systems with aftereffect under incomplete phase-coordinate data},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {111--127},
     publisher = {mathdoc},
     volume = {58},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2015_58_a6/}
}
TY  - JOUR
AU  - V. S. Kublanov
AU  - V. I. Maksimov
TI  - On feedback-principle control for systems with aftereffect under incomplete phase-coordinate data
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2015
SP  - 111
EP  - 127
VL  - 58
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2015_58_a6/
LA  - ru
ID  - CMFD_2015_58_a6
ER  - 
%0 Journal Article
%A V. S. Kublanov
%A V. I. Maksimov
%T On feedback-principle control for systems with aftereffect under incomplete phase-coordinate data
%J Contemporary Mathematics. Fundamental Directions
%D 2015
%P 111-127
%V 58
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2015_58_a6/
%G ru
%F CMFD_2015_58_a6
V. S. Kublanov; V. I. Maksimov. On feedback-principle control for systems with aftereffect under incomplete phase-coordinate data. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 1, Tome 58 (2015), pp. 111-127. http://geodesic.mathdoc.fr/item/CMFD_2015_58_a6/