Method of guiding functions for existence problems for periodic solutions of differential equations
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 1, Tome 58 (2015), pp. 59-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

We provide a review and systematic explanation of various generalizations of the guiding function method. The current state of the said method and its applications to various kinds of problems for nonlinear periodic systems described by differential and functional differential equations are considered.
@article{CMFD_2015_58_a3,
     author = {V. G. Zvyagin and S. V. Kornev},
     title = {Method of guiding functions for existence problems for periodic solutions of differential equations},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {59--81},
     publisher = {mathdoc},
     volume = {58},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2015_58_a3/}
}
TY  - JOUR
AU  - V. G. Zvyagin
AU  - S. V. Kornev
TI  - Method of guiding functions for existence problems for periodic solutions of differential equations
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2015
SP  - 59
EP  - 81
VL  - 58
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2015_58_a3/
LA  - ru
ID  - CMFD_2015_58_a3
ER  - 
%0 Journal Article
%A V. G. Zvyagin
%A S. V. Kornev
%T Method of guiding functions for existence problems for periodic solutions of differential equations
%J Contemporary Mathematics. Fundamental Directions
%D 2015
%P 59-81
%V 58
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2015_58_a3/
%G ru
%F CMFD_2015_58_a3
V. G. Zvyagin; S. V. Kornev. Method of guiding functions for existence problems for periodic solutions of differential equations. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 1, Tome 58 (2015), pp. 59-81. http://geodesic.mathdoc.fr/item/CMFD_2015_58_a3/

[1] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, Librokom, M., 2011 | MR

[2] Zvyagin V. G., Vvedenie v topologicheskie metody nelineinogo analiza, Uchebnoe posobie, VGU, Voronezh, 2014

[3] Kornev S. V., Obukhovskii V. V., “Ob integralnykh napravlyayuschikh funktsiyakh dlya funktsionalno-differentsialnykh vklyuchenii”, Topologicheskie metody nelineinogo analiza, Voronezh, 2000, 87–107

[4] Kornev S. V., “O metode mnogolistnykh napravlyayuschikh funktsii v zadache o periodicheskikh resheniyakh differentsialnykh vklyuchenii”, Avtomatika i telemekhanika, 2003, no. 3, 72–83 | MR | Zbl

[5] Kornev S. V., Obukhovskii V. V., “O lokalizatsii metoda napravlyayuschikh funktsii v zadache o periodicheskikh resheniyakh differentsialnykh vklyuchenii”, Izv. vuzov. Ser. Mat., 2009, no. 5, 23–32 | MR | Zbl

[6] Krasnoselskii M. A., Perov A. I., “Ob odnom printsipe suschestvovaniya ogranichennykh, periodicheskikh i pochti periodicheskikh reshenii u sistem obyknovennykh differentsialnykh uravnenii”, Dokl. AN SSSR, 123:2 (1958), 235–238 | MR

[7] Krasnoselskii M. A., Operator sdviga po traektoriyam differentsialnykh uravnenii, Nauka, M., 1966 | MR

[8] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR

[9] Perov A. I., Evchenko V. K., Metod napravlyayuschikh funktsii, VGU, Voronezh, 2012

[10] Rachinskii D. I., “Vynuzhdennye kolebaniya v sistemakh upravleniya v usloviyakh, blizkikh k rezonansu”, Avtomatika i telemekhanika, 1995, no. 11, 87–98 | MR | Zbl

[11] Fonda A., “Guiding functions and periodic solutions to functional differential equations”, Proc. Am. Math. Soc., 99:1 (1987), 79–85 | MR | Zbl

[12] Krasnoselskii A. M., Krasnoselskii M. A., Mawhin J., Pokrovskii A., “Generalized guiding functions in a problem on high frequency forced oscillations”, Nonlinear Anal., 22:11 (1994), 1357–1371 | DOI | MR

[13] Mawhin J. L., Topological degree methods in nonlinear boundary value problems, CBMS Regional Conf. Ser. in Math., 40, Amer. Math. Soc., Providence, R.I., 1977 | MR

[14] Mawhin J., Thompson H. B., “Periodic or bounded solutions of Carathéodory systems of ordinary differential equations”, J. Dynam. Differ. Equ., 15:2–3 (2003), 327–334 | DOI | MR | Zbl

[15] Mawhin J., Ward James R. (Jr.), “Guiding-like functions for periodic or bounded solutions of ordinary differential equations”, Discrete Contin. Dyn. Syst., 8:1 (2002), 39–54 | MR | Zbl

[16] Obukhovskii V., Zecca P., Loi N. V., Kornev S., Method of guiding functions in problems of nonlinear analysis, Springer, Berlin, 2013 | MR | Zbl

[17] Rachinskii D. I., “Multivalent guiding functions in forced oscillation problems”, Nonlinear Anal., 26:3 (1996), 631–639 | DOI | MR