On boundary-value problems for second-order elliptic and parabolic systems
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 1, Tome 58 (2015), pp. 43-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

For nonstandard boundary-value problems for systems of equations of elliptic and parabolic types with vector boundary conditions, the well-posedness is proved. Typical examples are provided.
@article{CMFD_2015_58_a2,
     author = {E. V. Golubeva and Yu. A. Dubinskii},
     title = {On boundary-value problems for second-order elliptic and parabolic systems},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {43--58},
     publisher = {mathdoc},
     volume = {58},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2015_58_a2/}
}
TY  - JOUR
AU  - E. V. Golubeva
AU  - Yu. A. Dubinskii
TI  - On boundary-value problems for second-order elliptic and parabolic systems
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2015
SP  - 43
EP  - 58
VL  - 58
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2015_58_a2/
LA  - ru
ID  - CMFD_2015_58_a2
ER  - 
%0 Journal Article
%A E. V. Golubeva
%A Yu. A. Dubinskii
%T On boundary-value problems for second-order elliptic and parabolic systems
%J Contemporary Mathematics. Fundamental Directions
%D 2015
%P 43-58
%V 58
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2015_58_a2/
%G ru
%F CMFD_2015_58_a2
E. V. Golubeva; Yu. A. Dubinskii. On boundary-value problems for second-order elliptic and parabolic systems. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 1, Tome 58 (2015), pp. 43-58. http://geodesic.mathdoc.fr/item/CMFD_2015_58_a2/

[1] Dubinskii Yu. A., “Razlozhenie sobolevskoi shkaly i gradientno-divergentnoi shkaly v summu solenoidalnykh i potentsialnykh podprostranstv”, Tr. MIAN, 255, 2005, 136–145 | MR

[2] Dubinskii Yu. A., “O nekotorykh kraevykh zadachakh dlya sistemy uravnenii Puassona v trekhmernoi oblasti”, Diff. uravn., 49:5 (2013), 610–613 | MR | Zbl

[3] Dubinskii Yu. A., “Ob odnoi kraevoi zadache dlya statsionarnoi sistemy uravnenii Stoksa”, Vestn. MEI, 2014, no. 1, 94–98

[4] Dubinskii Yu. A., “O nekotorykh zadachakh dlya sistem uravnenii Puassona i Stoksa”, Abstracts of the Seventh Int. Conf. on Differ. and Funct. Differ. Equ. (Moscow, Russia, August 21–28, 2014), 140

[5] Golubeva E. V., “Kraevaya zadacha dlya sistemy uravnenii Puassona v dvumernoi oblasti”, Probl. mat. analiza, 77, 2014, 55–61

[6] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR

[7] Dubinskii Yu. A., “Some coercive problems for the system of Poisson equations”, Russ. J. Math. Phys., 20:4 (2013), 402–412 | DOI | MR | Zbl