On regularity of solutions for initial-boundary value problems for the Zakharov--Kuznetsov equation
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 1, Tome 58 (2015), pp. 5-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CMFD_2015_58_a0,
     author = {A. P. Antonova and A. V. Faminskii},
     title = {On regularity of solutions for initial-boundary value problems for the {Zakharov--Kuznetsov} equation},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {5--21},
     publisher = {mathdoc},
     volume = {58},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2015_58_a0/}
}
TY  - JOUR
AU  - A. P. Antonova
AU  - A. V. Faminskii
TI  - On regularity of solutions for initial-boundary value problems for the Zakharov--Kuznetsov equation
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2015
SP  - 5
EP  - 21
VL  - 58
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2015_58_a0/
LA  - ru
ID  - CMFD_2015_58_a0
ER  - 
%0 Journal Article
%A A. P. Antonova
%A A. V. Faminskii
%T On regularity of solutions for initial-boundary value problems for the Zakharov--Kuznetsov equation
%J Contemporary Mathematics. Fundamental Directions
%D 2015
%P 5-21
%V 58
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2015_58_a0/
%G ru
%F CMFD_2015_58_a0
A. P. Antonova; A. V. Faminskii. On regularity of solutions for initial-boundary value problems for the Zakharov--Kuznetsov equation. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 1, Tome 58 (2015), pp. 5-21. http://geodesic.mathdoc.fr/item/CMFD_2015_58_a0/

[1] Antonova A. P., Faminskii A. V., “O regulyarnosti reshenii zadachi Koshi dlya uravneniya Zakharova–Kuznetsova v normakh Geldera”, Mat. zametki, 97:1 (2015), 13–22 | DOI | MR | Zbl

[2] Zakharov V. E., Kuznetsov E. A., “O trekhmernykh solitonakh”, Zhurn. eksper. teoret. fiz., 66:2 (1974), 594–597

[3] Kruzhkov S. N., Faminskii A. V, “O svoistvakh nepreryvnosti reshenii nekotorykh klassov nestatsionarnykh uravnenii”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 3 (1983), 29–34 | MR

[4] Faminskii A. V., “Smeshannaya zadacha v polupolose dlya uravneniya Kortevega–de Friza i ego obobschenii”, Tr. Mosk. Mat. ob-va, 51, 1988, 54–94 | MR | Zbl

[5] Faminskii A. V., “Zadacha Koshi dlya uravneniya Zakharova–Kuznetsova”, Diff. uravn., 31:6 (1995), 1070–1081 | MR

[6] Baykova E. S., Faminskii A. V., “On initial-boundary-value problems in a strip for the generalized two-dimensional Zakharov–Kuznetsov equation”, Adv. Differ. Equ., 18:7–8 (2013), 663–686 | MR | Zbl

[7] Doronin G. G., Larkin N. A., Stabilization of regular solutions for the Zakharov–Kuznetsov equation posed on bounded rectangles and on a strip, 25 sent. 2012, arXiv: 1209.5767v1[math.AP] | MR

[8] Faminskii A. V., “On the mixed problem for quasilinear equations of the third order”, J. Math. Sci. (N.Y.), 110:2 (2002), 2476–2507 | DOI | MR | Zbl

[9] Faminskii A. V., “Nonlocal well-posedness of the mixed problem for the Zakharov–Kuznetsov equation”, J. Math. Sci. (N.Y.), 147:1 (2007), 6524–6537 | DOI | MR | Zbl

[10] Faminskii A. V., “Well posed initial-boundary value problems for the Zakharov–Kuznetsov equation”, Electron. J. Differ. Equ., 2008 (2008), Article No. 127, 23 pp. | MR

[11] Faminskii A. V., “Weak solutions to initial-boundary value problems for quasilinear equations of an odd order”, Adv. Differ. Equ., 17:5–6 (2012), 421–470 | MR | Zbl

[12] Faminskii A. V., Antonova A. P., “On internal regularity of solutions to the initial value problem for the Zakharov–Kuznetsov equation”, Progress in Partial Differential Equations, Springer, 2013, 53–74 | DOI | MR | Zbl

[13] Faminskii A. V., Bashlykova I. Yu., “Weak solutions to one initial-boundary value problem with three boundary conditions for quasilinear equations of the third order”, Ukr. Math. Bull., 5:1 (2008), 83–98 | MR

[14] Larkin N. A., “Exponential decay of the $H^1$-norm for the 2D Zakharov–Kuznetsov equation on a half-strip”, J. Math. Anal. Appl., 405:1 (2013), 326–335 | DOI | MR | Zbl

[15] Larkin N. A., Tronco E., “Regular solutions of the 2D Zakharov–Kuznetsov equation on a half-strip”, J. Differ. Equ., 254:1 (2013), 81–101 | DOI | MR | Zbl

[16] Levandosky J. L., “Smoothing properties of nonlinear dispersive equations in two spatial dimensions”, J. Differ. Equ., 175:2 (2001), 275–301 | DOI | MR

[17] Linares F., Pastor A., Saut J.-C., “Well-posedness for the Zakharov–Kuznetsov equation in a cylinder and on the background of a KdV soliton”, Commun. Part. Differ. Equ., 35:9 (2010), 1674–1689 | DOI | MR | Zbl

[18] Saut J.-C., Temam R., “An initial boundary-value problem for the Zakharov–Kuznetsov equation”, Adv. Differ. Equ., 15:11–12 (2010), 1001–1031 | MR | Zbl

[19] Saut J. C., Temam R., Wang C., “An initial and boundary-value problem for the Zakharov–Kuznetsov equation in a bounded domain”, J. Math. Phys., 53 (2012), 115612 | DOI | MR | Zbl