Introduction to sublinear analysis~--~2: symmetric case
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 57 (2015), pp. 108-161.

Voir la notice de l'article provenant de la source Math-Net.Ru

The advanced theory of the first and higher symmetric Fréchet differentials and $K$-subdifferentials is constructed including the mean value theorem and the Taylor formula. We give simple sufficient conditions for symmetric $K$-subdifferentiability and consider some applications to Fourier series and variational functionals.
@article{CMFD_2015_57_a4,
     author = {I. V. Orlov and I. V. Baran},
     title = {Introduction to sublinear analysis~--~2: symmetric case},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {108--161},
     publisher = {mathdoc},
     volume = {57},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2015_57_a4/}
}
TY  - JOUR
AU  - I. V. Orlov
AU  - I. V. Baran
TI  - Introduction to sublinear analysis~--~2: symmetric case
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2015
SP  - 108
EP  - 161
VL  - 57
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2015_57_a4/
LA  - ru
ID  - CMFD_2015_57_a4
ER  - 
%0 Journal Article
%A I. V. Orlov
%A I. V. Baran
%T Introduction to sublinear analysis~--~2: symmetric case
%J Contemporary Mathematics. Fundamental Directions
%D 2015
%P 108-161
%V 57
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2015_57_a4/
%G ru
%F CMFD_2015_57_a4
I. V. Orlov; I. V. Baran. Introduction to sublinear analysis~--~2: symmetric case. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 57 (2015), pp. 108-161. http://geodesic.mathdoc.fr/item/CMFD_2015_57_a4/

[1] Baran I. V., “Simmetricheskie kompaktnye subdifferentsialy vtorogo poryadka i ikh primenenie k ryadam Fure”, Dinam. sist., 3(31):3–4 (2013), 201–214

[2] Baran I. V., “Simmetricheskie kompaktnye subdifferentsialy pervogo poryadka”, Uch. zap. Tavricheskogo natsionalnogo un-ta im. V. I. Vernadskogo. Ser. “Fiz.-mat. nauki”, 26(65):1 (2013), 16–30

[3] Baran I. V., “Teorema o srednem i formula Teilora dlya simmetricheskikh proizvodnykh i simmetricheskikh $K$-subdifferentsialov”, Uch. zap. Tavricheskogo natsionalnogo un-ta im. V. I. Vernadskogo. Ser. “Fiz.-mat. nauki”, 27(66):1 (2014), 3–20

[4] Bari N. K., Trigonometricheskie ryady, FM, M., 1961 | MR

[5] Basaeva E. K., “O subdifferentsialakh ne vsyudu opredelennykh vypuklykh operatorov”, Vladikavkazskii mat. zh., 8:4 (2006), 6–12 | MR | Zbl

[6] Gursa E., Kurs matematicheskogo analiza, Gos. tekhn.-teor. izd-vo, M., 1933

[7] Demyanov V. F., Rubinov A. M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990 | MR

[8] Demyanov V. F., Roschina V. A., “Obobschennye subdifferentsialy i ekzostery”, Vladikavkazskii mat. zh., 8:4 (2006), 19–31 | MR | Zbl

[9] Zigmund A., Trigonometricheskie ryady, v. 2, Mir, M., 1965 | MR

[10] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR

[11] Kartan A., Differentsialnoe ischislenie. Differentsialnye formy, Mir, M., 1971 | MR

[12] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR

[13] Kusraev A. G., Kutateladze S. S., “Lokalnyi vypuklyi analiz”, Itogi nauki i tekhn. Sovrem. probl. mat., 19, 1982, 155–206 | MR | Zbl

[14] Levin V. L., “O subdifferentsialakh vypuklykh funktsionalov”, Usp. mat. nauk, 25:4(154) (1970), 183–184 | MR | Zbl

[15] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR

[16] Orlov I. V., “Vvedenie v sublineinyi analiz”, Sovrem. mat. Fundam. napravl., 53, 2014, 64–132

[17] J. Math. Sci., 170:2 (2010), 251–269 | DOI | MR | Zbl

[18] J. Math. Sci., 180:6 (2012), 731–747 | DOI | MR | Zbl

[19] Orlov I. V., Khalilova Z. I., “Kompaktnye subdifferentsialy v banakhovykh prostranstvakh i ikh primenenie k variatsionnym funktsionalam”, Sovrem. mat. Fundam. napravl., 49, 2013, 99–131

[20] J. Math. Sci., 198:4 (2014), 438–456 | DOI | Zbl

[21] Polovinkin E. S., Balashov M. V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004

[22] Prudnikov I. M., “Integralnaya approksimatsiya lipshitsevykh funktsii”, Vestn. S.-Pb. un-ta, 10:2 (2010), 70–83 | MR

[23] Pshenichnyi B. N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980 | MR

[24] Reshetnyak Yu. G., “Usloviya ekstremuma dlya odnogo klassa funktsionalov variatsionnogo ischisleniya s negladkim integrantom”, Sib. mat. zh., 28:6 (1987), 90–101 | MR | Zbl

[25] Rokafellar R., Vypuklyi analiz, Mir, M., 1973

[26] Saks S., Teoriya integrala, Izd-vo inostr. lit., M., 1949

[27] Stonyakin F. S., “Analog teoremy Danzhua–Yung–Saksa o kontingentsii dlya otobrazhenii v prostranstva Freshe i odno ego prilozhenie v teorii vektornogo integrirovaniya”, Tr. In-ta prikl. mat. i mekh. NAN Ukrainy, 20, 2010, 168–176 | MR | Zbl

[28] Stonyakin F. S., Kompaktnye kharakteristiki otobrazhenii i ikh prilozheniya k integralu Bokhnera v lokalno vypuklykh prostranstvakh, Diss. $\dots$ k.f.-m.n., Simferopol, 2011

[29] Tikhomirov V. M., “Vypuklyi analiz”, Sovrem. probl. mat. Fundam. napravl., 14, 1987, 5–101 | MR | Zbl

[30] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 1, Fizmatlit, M., 2001

[31] Khalilova Z. I., “$K$-sublineinye mnogoznachnye operatory i ikh svoistva”, Uch. zap. Tavricheskogo natsionalnogo un-ta im. V. I. Vernadskogo. Ser. “Fiz.-mat. nauki”, 24(63):3 (2011), 110–122

[32] Khalilova Z. I., “Primenenie kompaktnykh subdifferentsialov v banakhovykh prostranstvakh k variatsionnym funktsionalam”, Uch. zap. Tavricheskogo natsionalnogo un-ta im. V. I. Vernadskogo. Ser. “Fiz.-mat. nauki”, 25(64):2 (2012), 140–160

[33] Khalilova Z. I., “Kompaktnye subdifferentsialy vysshikh poryadkov i ikh primenenie k variatsionnym zadacham”, Dinam. sist., 2(30):3–4 (2012), 115–133

[34] Khalilova Z. I., Kompaktnye subdifferentsialy v banakhovykh konusakh i ikh prilozheniya v variatsionnom ischislenii, Diss. $\dots$ k.f.-m.n., Simferopol, 2014

[35] Bertsekas D. P., Nedid A., Ozdaglar A. E., Convex analysis and optimization, Athena Scientific, Belmont, 2003 | MR | Zbl

[36] de la Vallee Poussin Ch. J., “Sur l'approximation des fonctions d'une variable réelle et de leurs derivées par les polynomes et des suites limitées de Fourier”, Bull. Acad. de Belgique, 3 (1908), 193–254

[37] Ekeland I., Temam R., Convex analysis and variational problems, North-Holland Publishing Company, Amsterdam–Oxford; American Elservier Publishing Company, Inc., New York, 1976 | MR | Zbl

[38] James R. D., “Generalized nTH primitives”, Trans. Am. Math. Soc., 76:1 (1954), 149–176 | MR | Zbl

[39] Orlov I. V., Stonyakin F. S., “Compact variation, compact subdifferentiability and indefinite Bochner integral”, Methods Funct. Anal. Topology, 15:1 (2009), 74–90 | MR | Zbl