Introduction to sublinear analysis~--~2: symmetric case
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 57 (2015), pp. 108-161

Voir la notice de l'article provenant de la source Math-Net.Ru

The advanced theory of the first and higher symmetric Fréchet differentials and $K$-subdifferentials is constructed including the mean value theorem and the Taylor formula. We give simple sufficient conditions for symmetric $K$-subdifferentiability and consider some applications to Fourier series and variational functionals.
@article{CMFD_2015_57_a4,
     author = {I. V. Orlov and I. V. Baran},
     title = {Introduction to sublinear analysis~--~2: symmetric case},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {108--161},
     publisher = {mathdoc},
     volume = {57},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2015_57_a4/}
}
TY  - JOUR
AU  - I. V. Orlov
AU  - I. V. Baran
TI  - Introduction to sublinear analysis~--~2: symmetric case
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2015
SP  - 108
EP  - 161
VL  - 57
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2015_57_a4/
LA  - ru
ID  - CMFD_2015_57_a4
ER  - 
%0 Journal Article
%A I. V. Orlov
%A I. V. Baran
%T Introduction to sublinear analysis~--~2: symmetric case
%J Contemporary Mathematics. Fundamental Directions
%D 2015
%P 108-161
%V 57
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2015_57_a4/
%G ru
%F CMFD_2015_57_a4
I. V. Orlov; I. V. Baran. Introduction to sublinear analysis~--~2: symmetric case. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 57 (2015), pp. 108-161. http://geodesic.mathdoc.fr/item/CMFD_2015_57_a4/