Rough diffeomorphisms with basic sets of codimension one
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 57 (2015), pp. 5-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

The review is devoted to the exposition of results (including those of the authors of the review) obtained from the 2000s until the present, on topological classification of structurally stable cascades defined on a smooth closed manifold $M^n$ ($n\ge3$) assuming that their nonwandering sets either contain an orientable expanding (contracting) attractor (repeller) of codimension one or completely consist of basic sets of codimension one. The results presented here are a natural continuation of the topological classification of Anosov diffeomorphisms of codimension one. The review also reflects progress related to construction of the global Lyapunov function and the energy function for dynamical systems on manifolds (in particular, a construction of the energy function for structurally stable $3$-cascades with a nonwandering set containing a two-dimensional expanding attractor is described).
@article{CMFD_2015_57_a0,
     author = {V. Z. Grines and Ye. V. Zhuzhoma and O. V. Pochinka},
     title = {Rough diffeomorphisms with basic sets of codimension one},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {5--30},
     publisher = {mathdoc},
     volume = {57},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2015_57_a0/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - Ye. V. Zhuzhoma
AU  - O. V. Pochinka
TI  - Rough diffeomorphisms with basic sets of codimension one
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2015
SP  - 5
EP  - 30
VL  - 57
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2015_57_a0/
LA  - ru
ID  - CMFD_2015_57_a0
ER  - 
%0 Journal Article
%A V. Z. Grines
%A Ye. V. Zhuzhoma
%A O. V. Pochinka
%T Rough diffeomorphisms with basic sets of codimension one
%J Contemporary Mathematics. Fundamental Directions
%D 2015
%P 5-30
%V 57
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2015_57_a0/
%G ru
%F CMFD_2015_57_a0
V. Z. Grines; Ye. V. Zhuzhoma; O. V. Pochinka. Rough diffeomorphisms with basic sets of codimension one. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 57 (2015), pp. 5-30. http://geodesic.mathdoc.fr/item/CMFD_2015_57_a0/

[1] Andponov A. A., Pontpyagin L. S., “Gpubye sistemy”, Dokl. AN SSSP, 14:5 (1937), 247–250

[2] Anosov D. V., “Grubost geodezicheskikh potokov na kompaktnykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny”, Dokl. AN SSSR, 145:4 (1962), 707–709 | MR | Zbl

[3] Anosov D. V., “Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny”, Tr. MIAN, 90, 1967, 3–210 | MR | Zbl

[4] Anosov D. V., “Ob odnom klasse invapiantnykh mnozhestv gladkikh dinamicheskikh sistem”, Tpudy pyatoi mezhdunapodnoi konfepentsii po nelineinym kolebaniyam, v. 2, Kachestvennye metody, In-t matematiki AN USSP, 1970, 39–45

[5] Anosov D. V., “Grubye sistemy”, Tr. MIAN, 169, 1985, 59–93 | MR | Zbl

[6] Grines V. Z., “O topologicheskoi soppyazhennosti diffeomopfizmov dvumepnogo mnogoobpaziya na odnomepnykh bazisnykh mnozhestvakh”, Usp. mat. nauk, 29:6(180) (1974), 163–164 | MR | Zbl

[7] Grines V. Z., “O topologicheskoi sopryazhennosti diffeomorfizmov dvumernogo mnogoobraziya na odnomernykh orientiruemykh bazisnykh mnozhestvakh. 1”, Tr. Mosk. Mat. ob-va, 32, 1975, 35–60 | MR | Zbl

[8] Grines V. Z., “O topologicheskoi sopryazhennosti diffeomorfizmov dvumernogo mnogoobraziya na odnomernykh orientiruemykh bazisnykh mnozhestvakh. 2”, Tr. Mosk. Mat. ob-va, 34, 1977, 243–252 | MR | Zbl

[9] Grines V. Z., “O topologicheskoi klassifikatsii strukturno ustoichivykh diffeomopfizmov poverkhnostei s odnomernymi attraktorami i repellerami”, Mat. sb., 188:4 (1997), 57–94 | DOI | MR | Zbl

[10] Grines V. Z., Zhuzhoma E. V., “O topologicheskoi klassifikatsii orientiruemykh attraktorov na $n$-mernom tore”, Usp. mat. nauk, 34:4 (1979), 185–186 | MR | Zbl

[11] Grines V. Z., Zhuzhoma E. V., “O grubykh diffeomorfizmakh s rastyagivayuschimisya attraktorami i szhimayuschimisya repellerami korazmernosti odin”, Dokl. RAN, 374 (2000), 274–276 | MR | Zbl

[12] Grines V. Z., Zhuzhoma E. V., “Strukturno ustoichivye diffeomorfizmy s bazisnymi mnozhestvami korazmernosti odin”, Izv. RAN. Ser. Mat., 66:2 (2002), 3–66 | DOI | MR | Zbl

[13] Grines V. Z., Zhuzhoma E. V., Medvedev V. S., “O poverkhnostnykh attraktorakh i repellerakh na 3-mnogoobraziyakh”, Mat. zametki, 78:6 (2005), 813–826 | DOI | MR | Zbl

[14] Grines V. Z., Laudenbakh F., Pochinka O. V., “Kvazi-energeticheskaya funktsiya dlya diffeomorfizmov s dikimi separatrisami”, Mat. zametki, 86:2 (2009), 175–183 | DOI | MR | Zbl

[15] Grines V., Levchenko Yu., Pochinka O., “O topologicheskoi klassifikatsii diffeomorfizmov na 3-mnogoobraziyakh s poverkhnostnymi dvumernymi attraktorami i repellerami”, Nelin. dinam., 10:1 (2014), 17–33

[16] Grines V. Z., Noskova M. K., Pochinka O. V., Postroenie energeticheskoi funktsii dlya trekhmernykh kaskadov s dvumernym rastyagivayuschimsya attraktorom, Prinyato v pechat

[17] Grines V. Z., Pochinka O. V., Vvedenie v topologicheskuyu klassifikatsiyu diffeomorfizmov na mnogoobraziyakh razmernosti dva i tri, Moskva–Izhevsk, 2011

[18] Zhuzhoma E. V., Isaenkova N. V., “O klassifikatsii odnomernykh rastyagivayuschikhsya attraktorov”, Mat. zametki, 86:3 (2009), 360–370 | DOI | MR | Zbl

[19] Zhuzhoma E. V., Medvedev V. S., “O neorientiruemykh dvumernykh bazisnykh mnozhestvakh na 3-mnogoobraziyakh”, Mat. sb., 193:6 (2002), 83–104 | DOI | MR | Zbl

[20] Maier A. G., “Gruboe preobrazovanie okruzhnosti v okruzhnost”, Uch. zap. Gork. gos. un-ta, 12, 1939, 215–229

[21] Milnor Dzh., Teoriya Morsa, Platon, 1996

[22] Plykin R. V., “O topologii bazisnykh mnozhestv diffeomopfizmov S. Smeila”, Mat. sb., 84:2 (1971), 301–312 | MR | Zbl

[23] Plykin R. V., “Istochniki i stoki A-diffeomorfizmov poverkhnostei”, Mat. sb., 94(136):2 (1974), 243–264 | MR | Zbl

[24] Plykin R. V., “O strukture tsentralizatorov anosovskikh diffeomorfizmov tora”, Usp. mat. nauk, 53:6 (1998), 259–260 | DOI | MR | Zbl

[25] Smeil C., “Stpuktupno ustoichivyi diffepentsipuemyi gomeomopfizm s beskonechnym chislom pepiodicheskikh tochek”, Tezisy doklada na simpoziume po nelineinym kolebaniyam, Tpudy mezhdunapodnogo simpoziuma po nelineinym kolebaniyam (Kiev, Institut matematiki AN USSP, 1961), v. II, Izd-vo AN USSP, Kiev, 1963, 365–366

[26] Shilnikov L. P., “Ob odnoi zadache Puankare–Birkgofa”, Mat. sb., 74(116):3 (1967), 378–397 | MR | Zbl

[27] Shilnikov L. P., “O suschestvovanii schetnogo mnozhestva periodicheskikh dvizhenii v okrestnosti gomoklinicheskoi krivoi”, Dokl. AN SSSR, 172:2 (1967), 298–301 | Zbl

[28] Birkhoff G., “On the periodic motions of dynamics”, Acta Math., 50 (1927), 359–379 | DOI | MR | Zbl

[29] Bonatti Ch., Grines V., “Knots as topological invariant for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dyn. Control Syst., 6:4 (2000), 579–602 | DOI | MR | Zbl

[30] Bonatti Ch., Guelemmaan N., “Axiom A diffeomorphisms which are derived from Anosov flows”, J. Mod. Dyn., 4:1 (2010), 1–63 | DOI | MR | Zbl

[31] Bothe H., “The ambient structure of expanding attractors. I. Local triviality, tubular neighdorhoods”, Math. Nachr., 107 (1982), 327–348 | DOI | MR | Zbl

[32] Bothe H., “The ambient structure of expanding attractors. II. Solenoids in 3-manifolds”, Math. Nachr., 112 (1983), 69–102 | DOI | MR | Zbl

[33] Bowen R., “Periodic points and measures for axiom A diffeomorphisms”, Trans. Am. Math. Soc., 154 (1971), 337–397 | MR

[34] Brown A., “Nonexpanding attractors: conjugacy to algebraic models and classification in 3-manifolds”, J. Mod. Dyn., 3:4 (2010), 517–548 | DOI | MR | Zbl

[35] Conley C., Isolated invariant sets and Morse index, Am. Math. Soc., Providence, 1978 | MR | Zbl

[36] Franks J., “Anosov diffeomorphisms”, Global Analisys, Proc. Symp. in Pure Math., 14, 1970, 61–93 ; Gladkie dinamicheskie sistemy, M., 1977, 32–86 | DOI | MR | Zbl | MR

[37] Grines V., Laudenbach F., Pochinka O., “Self-indexing function for Morse-Smale diffeomorphisms on 3-manifolds”, Mosc. Math. J., 9:4 (2009), 801–821 | MR | Zbl

[38] Grines V. Z., Laudenbach F., Pochinka O. V., “Dynamically ordered energy function for Morse–Smale diffeomorphisms on 3-manifolds”, Proc. Steklov Inst. Math., 278:1 (2012), 27–40 | DOI | MR | Zbl

[39] Grines V., Levchenko Y., Medvedev V., Pochinka O., “On the dynamical coherence of structurally stable 3-diffeomorphisms”, Regul. Chaotic Dyn., 19:4 (2014), 506–512 | DOI | MR | Zbl

[40] Grines V., Zhuzhoma E., “On structurally stable diffeomorphisms with codimension one expanding attractors”, Trans. Am. Math. Soc., 357:2 (2005), 617–667 | DOI | MR | Zbl

[41] Günter B., “Attractors which are homeomorphic to compact abelian groups”, Manuscripta Math., 82 (1994), 31–40 | DOI | MR

[42] Hertz F., Herts M., Ures R., “Tori with hyperbolic dynamics in 3-manifolds”, J. Mod. Dyn., 5:1 (2011), 185–202 | DOI | MR | Zbl

[43] Hirsch M., Palis J., Pugh C., Shub M., “Neighborhoods of hyperbolic sets”, Invent. Math., 9 (1970), 121–134 | DOI | MR | Zbl

[44] Hirsch M., Pugh C., Shub M., Invariant manifolds, Springer-Verlag, 1977 | MR | Zbl

[45] Jiang B., Wang S., Zheng H., “No embeddings of solenoids into surfaces”, Proc. Am. Math. Soc., 136 (2008), 3697–3700 | DOI | MR | Zbl

[46] Kaplan J., Mallet-Paret J., Yorke J., “The Lyapunov dimension of a nowhere differentiable attracting torus”, Ergodic Theory Dynam. Systems, 4:2 (1984), 261–281 | MR | Zbl

[47] Kollemmaer H., “On hyperbolic attractors of codimension one”, Lecture Notes in Math., 597, 1976, 330–334 | DOI | MR

[48] Ma J., Yu B., “Genus two Smale–Williams solenoid attractors in 3-manifolds”, J. Knot Theory Ramifications, 20:6 (2011), 909–926 | DOI | MR | Zbl

[49] Mañé R., “A proof of $C^1$ stability conjecture”, Publ. Math. Inst. Hautes Études Sci., 66 (1988), 161–210 | DOI | MR | Zbl

[50] Medvedev V., Zhuzhoma E., “On the existence of codimension one non-orientable expanding attractors”, J. Dyn. Control Syst., 11:3 (2005), 405–411 | DOI | MR | Zbl

[51] Meyer K. R., “Energy functions for Morse–Smale systems”, Am. J. Math., 90 (1968), 1031–1040 | DOI | MR | Zbl

[52] Moise E., Geometric topology in dimensions 2 and 3, Springer-Verlag, 1977 | MR | Zbl

[53] Newhouse S., “On codimension one Anosov diffeomorphisms”, Am. J. Math., 92:3 (1977), 761–770 | DOI | MR

[54] Pixton D., “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172 | DOI | MR | Zbl

[55] Plante J., “The homology class of an expanded invariant manifolds”, Lecture Notes in Math., 468, 1975, 251–256 | DOI | MR | Zbl

[56] Poincare H., Les méthodes nouvelles de la mécanique celeste, v. III, Paris, 1899

[57] Robinson C., “Structural stability of $C^1$ diffeomorphisms”, J. Differ. Equ., 22:1 (1976), 28–73 | DOI | MR | Zbl

[58] Robinson C., Dynamical systems: stability, symbolic dynamics, and chaos, CRC Press, 1999 | MR | Zbl

[59] Smale S., “On gradient dynamical systems”, Ann. Math. (2), 74 (1961), 199–206 | DOI | MR | Zbl

[60] Smale S., “Stable manifolds for differential equations and diffeomorphisms”, Ann. Sc. Norm. Super. Pisa, 18 (1963), 97–116 | MR

[61] Smale S., “Differentiable dynamical systems”, Bull. Am. Math. Soc., 73:1 (1967), 741–817 ; Usp. mat. nauk, 25:1 (1970), 113–185 | MR | MR

[62] Smale S., “Stability and isotopy in discrete dynamical systems”, Dynamical Systems, Academic Press, New York, 1973, 527–530 | MR

[63] Williams R., “Expanding attractors”, Publ. Math. Inst. Hautes Études Sci., 43 (1974), 169–203 | DOI | MR

[64] Wilson W., Yorke J., “Lyapunov functions and isolating blocks”, J. Differ. Equ., 13 (1973), 106–123 | DOI | MR | Zbl