On nonviscous solutions of a~multicomponent euler system
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 53 (2014), pp. 133-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a nonstandard regularization for a multicomponent Euler system and obtain analogs of the Hugoniót condition and the Lax stability condition. We investigate the local accessibility problem for phase space points and construct dual bifurcations of one-front solutions of the truncated Euler system into two-front solutions.
@article{CMFD_2014_53_a3,
     author = {V. V. Palin and E. V. Radkevich and N. N. Yakovlev and E. A. Lukashev},
     title = {On nonviscous solutions of a~multicomponent euler system},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {133--154},
     publisher = {mathdoc},
     volume = {53},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2014_53_a3/}
}
TY  - JOUR
AU  - V. V. Palin
AU  - E. V. Radkevich
AU  - N. N. Yakovlev
AU  - E. A. Lukashev
TI  - On nonviscous solutions of a~multicomponent euler system
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2014
SP  - 133
EP  - 154
VL  - 53
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2014_53_a3/
LA  - ru
ID  - CMFD_2014_53_a3
ER  - 
%0 Journal Article
%A V. V. Palin
%A E. V. Radkevich
%A N. N. Yakovlev
%A E. A. Lukashev
%T On nonviscous solutions of a~multicomponent euler system
%J Contemporary Mathematics. Fundamental Directions
%D 2014
%P 133-154
%V 53
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2014_53_a3/
%G ru
%F CMFD_2014_53_a3
V. V. Palin; E. V. Radkevich; N. N. Yakovlev; E. A. Lukashev. On nonviscous solutions of a~multicomponent euler system. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 53 (2014), pp. 133-154. http://geodesic.mathdoc.fr/item/CMFD_2014_53_a3/

[1] Zeldovich Ya. B., Kompaneets A. S., Teoriya detonatsii, Gostekhizdat, M., 1955

[2] Zeldovich Ya. B., Raizer Yu. P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, Nauka, M., 1966

[3] Ivanov M. Ya., Terenteva L. V., Elementy gazodinamiki dispergiruyuschei sredy, Informkonversiya, M., 2002

[4] Kosorukov A. L., Radvogin Yu. B., “Osesimmetricheskoe sverkhzvukovoe obtekanie konusa neravnovesnoreagiruyuschim vozdukhom”, Preprint IPM im. M. V. Keldysha, 1984, 119

[5] Laks P. D., Giperbolicheskie differentsialnye uravneniya v chastnykh proizvodnykh, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2010

[6] Mitideri E., Pokhozhaev S. I., Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh, MAIK «Nauka/Interperiodika», M., 2001

[7] Surzhikov S. T., Raschetnoe issledovanie aerotermodinamiki giperzvukovogo obtekaniya zatuplennykh tel na primere analiza eksperimentalnykh dannykh, IPM im. A. Yu. Ishlinskogo RAN, M., 2011

[8] Chernyi G. G., Techeniya gaza s bolshoi sverkhzvukovoi skorostyu, Fizmatlit, M., 1959

[9] Evans L. K., Uravneniya s chastnymi proizvodnymi, Tamara Rozhkovskaya, Novosibirsk, 1998

[10] Yakovlev N. N., Lukashev E. A., Palin V. V., Radkevich E. V., “Mnogokomponentnaya sistema Eilera, nevyazkie resheniya”, Tr. sem. im. I. G. Petrovskogo (to appear)

[11] Danilov V. G., Omel'yanov G. A., Radkevich E. V., “Hugoniot-type conditions and weak solutions to the phase field system”, Eur. J. Appl. Math., 10 (1999), 55–77 | DOI | MR | Zbl

[12] Lukashov E. A., Radkevich E. V., “Solidification and structuresation of instability zones”, Appl. Math., 1 (2010), 159–178 | DOI

[13] Majda A., Pego R., “Stable viscosity matrices for system of conservation laws”, J. Differ. Equ., 56 (1985), 229–262 | DOI | MR | Zbl

[14] Radkevich E. V., “On the nature of bifurcations of one-front solutions of the truncated Euler system”, J. Math. Sci. (N. Y.), 196:3 (2014), 388–404 | DOI | Zbl

[15] Wagner J. L., Experimental studies of unstart dynamics in inlet. Isolator configurations in a Mach 5 flow, Dissertation, Fac. Grad. School, Univ. Texas Austin, 2011

[16] Yakovlev N. N., Lukashev E. A., Palin V. V., Radkevich E. V., “Nonclassical regularization of the multicomponent Euler system”, J. Math. Sci. (N. Y.), 196:3 (2014), 322–345 | DOI | Zbl