Introduction to sublinear analysis
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 53 (2014), pp. 64-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

Basing on the notion of compact subdifferentials, we develop a subdifferential calculus of the first and the second orders beyond the Taylor expansion and extremum theory. We introduce and investigate a comprehensive class of subsmooth maps such that the constructed theory is applicable to them. We develop a technique to investigate one-dimensional extremal variational problems with subsmooth Lagrangians (including sufficient conditions). A number of examples are considered.
@article{CMFD_2014_53_a2,
     author = {I. V. Orlov},
     title = {Introduction to sublinear analysis},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {64--132},
     publisher = {mathdoc},
     volume = {53},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2014_53_a2/}
}
TY  - JOUR
AU  - I. V. Orlov
TI  - Introduction to sublinear analysis
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2014
SP  - 64
EP  - 132
VL  - 53
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2014_53_a2/
LA  - ru
ID  - CMFD_2014_53_a2
ER  - 
%0 Journal Article
%A I. V. Orlov
%T Introduction to sublinear analysis
%J Contemporary Mathematics. Fundamental Directions
%D 2014
%P 64-132
%V 53
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2014_53_a2/
%G ru
%F CMFD_2014_53_a2
I. V. Orlov. Introduction to sublinear analysis. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 53 (2014), pp. 64-132. http://geodesic.mathdoc.fr/item/CMFD_2014_53_a2/

[1] Basaeva E. K., “O subdifferentsialakh ne vsyudu opredelennykh vypuklykh operatorov”, Vladikavkaz. mat. zhurn., 8:4 (2006), 6–12 | MR

[2] Blagodatskikh V. I., Vvedenie v optimizatsiyu, Vysshaya shkola, M., 2001

[3] Demyanov V. F., Usloviya ekstpemuma i vapiatsionnye zadachi, NII Khimii SPbGU, SPb., 2000

[4] Demyanov V. F., Roschina V. A., “Obobschennye subdifferentsialy i ekzostery”, Vladikavkaz. mat. zhurn., 8:4 (2006), 19–31 | MR

[5] Demyanov V. F., Rubinov A. M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990 | MR

[6] Dmitruk A. V., Vypuklyi analiz. Elementarnyi vvodnyi kurs, Izd. otd. f-ta VMK MGU; MAKS Press, M., 2012

[7] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[8] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR

[9] Kusraev A. G., Kutateladze S. S., “Lokalnyi vypuklyi analiz”, Itogi nauki i tekhn. Sovrem. probl. mat., 19 (1982), 155–206 | MR | Zbl

[10] Kutateladze S. S., “Vypuklye operatory”, Usp. mat. nauk., 34:1 (1979), 167–196 | MR | Zbl

[11] Levin V. L., “O subdifferentsialakh vypuklykh funktsionalov”, Usp. mat. nauk., 25:4 (154) (1970), 183–184 | MR | Zbl

[12] Linke Yu. E., “Primeneniya teoremy Maikla i ee obraschenie k sublineinym operatoram”, Mat. zametki, 52:1 (1992), 67–75 | MR

[13] Linke Yu. E., “Usloviya prodolzheniya ogranichennykh lineinykh i sublineinykh operatorov so znacheniyami v prostranstvakh Lindenshtraussa”, Sib. mat. zh., 51:6 (2010), 1340–1358 | MR | Zbl

[14] Linke Yu. E., “Universalnye prostranstva subdifferentsialov sublineinykh operatorov so znacheniyami v konuse ogranichennykh polunepreryvnykh snizu funktsii”, Mat. zametki., 89:4 (2011), 547–557 | DOI | MR | Zbl

[15] Magaril-Ilyaev G. G., Tikhomirov V. M., Vypuklyi analizi ego prilozheniya, Editorial URSS, M., 2003

[16] Orlov I. V., Stonyakin F. S., “Kompaktnye subdifferentsialy: formula konechnykh priraschenii i smezhnye rezultaty”, Sovrem. mat. Fundam. napravl., 34 (2009), 121–138 | MR

[17] Orlov I. V., Stonyakin F. S., “Predelnaya forma svoistva Radona—Nikodima spravedliva v lyubom prostranstve Freshe”, Sovrem. mat. Fundam. napravl., 37 (2010), 55–69 | MR

[18] Orlov I. V., Khalilova Z. I., “Kompaktnye subdifferentsialy v banakhovykh konusakh”, Ukr. mat. vestn., 10:4 (2013), 532–558

[19] Orlov I. V., Khalilova Z. I., “Kompaktnye subdifferentsialy v banakhovykh prostranstvakh i ikh primenenie k variatsionnym funktsionalam”, Sovrem. mat. Fundam. napravl., 49 (2013), 99–131

[20] Polovinkin E. S., Vypuklyi analiz, uchebnoe posobie, MFTI, M., 2006

[21] Polovinkin E. S., Balashov M. V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004

[22] Pshenichnyi B. N., Vypuklyi analizi ekstremalnye zadachi, Nauka, M., 1971

[23] Reshetnyak Yu. G., “Usloviya ekstremuma dlya odnogo klassa funktsionalov variatsionnogo ischisleniya s negladkim integrantom”, Sib. mat. zh., 28:6 (1987), 90–101 | MR

[24] Rokafellar R., Vypuklyi analiz, Mir, M., 1973

[25] Rubinov A. M., “Sublineinye operatory i ikh prilozheniya”, Usp. mat. nauk., 32:4 (1977), 113–174 | MR | Zbl

[26] Rubinov A. M., Superlineinye mnogoznachnye otobrazheniya i ikh prilozheniya k ekonomiko-matematicheskim zadacham, Nauka, Leningrad, 1980 | MR

[27] Stonyakin F. S., “Analog teoremy Danzhua—Yung—Saksa o kontingentsii dlya otobrazhenii v prostranstva Freshe i odno ego prilozhenie v teorii vektornogo integrirovaniya”, Tr. IPMM NAN Ukrainy, 20 (2010), 168–176 | MR | Zbl

[28] Stonyakin F. S., Kompaktnye kharakteristiki otobrazhenii i ikh prilozheniya k integralu Bokhnera v lokalno vypuklykh prostranstvakh, Diss. k.f.-m.n., Simferopol, 2011

[29] Tikhomirov V. M., “Vypuklyi analiz”, Sovrem. probl. mat. Fundam. napravl., 14 (1987), 5–101 | MR

[30] Tikhonov A. I., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1977

[31] Trubetskov D. I., Rozhnev A. G., Lineinye kolebaniya i volny, Fizmatlit, M., 2001

[32] Khalilova Z. I., “$K$-sublineinye mnogoznachnye operatory i ikh svoistva”, Uch. zap. Tavricheskogo natsionalnogo un-ta im. V.I. Vernadskogo. Fiz.-mat. nauki, 24 (63):3 (2011), 110–122

[33] Khalilova Z. I., “Primenenie kompaktnykh subdifferentsialov v banakhovykh prostranstvakh k variatsionnym funktsionalam”, Uch. zap. Tavricheskogo natsionalnogo un-ta im. V.I. Vernadskogo. Fiz.-mat. nauki, 25 (64):2 (2012), 140–160

[34] Khalilova Z. I., “Kompaktnye cubdifferentsialy vysshikh poryadkov i ikh primenenie k variatsionnym zadacham”, Dinam. sist., 3 (31):1-2 (2013), 115–134

[35] Bertsekas D. P., Nedis A., Ozdaglar A. E., Convex analysis and optimization, Athena Scientific, Belmont, 2003 | MR | Zbl

[36] Ekeland I., Temam R., Convex analysis and variational problems, North Holland, Oxford; Elsevier, New York, 1976 | MR | Zbl

[37] Fuchssteiner B., Lusky W., Convex cones, North-Holland, Amsterdam–New York–Oxford, 1981 | MR | Zbl

[38] Keimel K., Roth W., Ordered cones and approximation, Springer, Heidelberg–Berlin–New York, 1992 | MR | Zbl

[39] Orlov I. V., Stonyakin F. S., “Sompact variation, compact subdifferentiability and indefinite Bochner integral”, Methods Funct. Anal. Topology, 15 (1) (2009), 74–90 | MR | Zbl

[40] Ranjbari A., Saiflu H., “Some results on the uniform boundedness theorem in locally convex cones”, Methods Funct. Anal. Topology, 15:4 (2009), 361–368 | MR | Zbl

[41] Roth W., “A uniform boundedness theorem for locally convex cones”, Proc. Am. Math. Soc., 126:7 (1998), 1973–1982 | DOI | MR | Zbl