Introduction to sublinear analysis
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 53 (2014), pp. 64-132

Voir la notice de l'article provenant de la source Math-Net.Ru

Basing on the notion of compact subdifferentials, we develop a subdifferential calculus of the first and the second orders beyond the Taylor expansion and extremum theory. We introduce and investigate a comprehensive class of subsmooth maps such that the constructed theory is applicable to them. We develop a technique to investigate one-dimensional extremal variational problems with subsmooth Lagrangians (including sufficient conditions). A number of examples are considered.
@article{CMFD_2014_53_a2,
     author = {I. V. Orlov},
     title = {Introduction to sublinear analysis},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {64--132},
     publisher = {mathdoc},
     volume = {53},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2014_53_a2/}
}
TY  - JOUR
AU  - I. V. Orlov
TI  - Introduction to sublinear analysis
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2014
SP  - 64
EP  - 132
VL  - 53
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2014_53_a2/
LA  - ru
ID  - CMFD_2014_53_a2
ER  - 
%0 Journal Article
%A I. V. Orlov
%T Introduction to sublinear analysis
%J Contemporary Mathematics. Fundamental Directions
%D 2014
%P 64-132
%V 53
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2014_53_a2/
%G ru
%F CMFD_2014_53_a2
I. V. Orlov. Introduction to sublinear analysis. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 53 (2014), pp. 64-132. http://geodesic.mathdoc.fr/item/CMFD_2014_53_a2/