On the volume of hyperbolic octahedra with nontrivial symmetry
Contemporary Mathematics. Fundamental Directions, Topology, Tome 51 (2013), pp. 74-86

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper from Derevnin–Mednykh's formula we obtain integral formulas for the volume of an arbitrary hyperbolic octahedron with $\mathrm{mmm}$- and $2|\mathrm m$-symmetry in terms of dihedral angles.
@article{CMFD_2013_51_a4,
     author = {V. A. Krasnov},
     title = {On the volume of hyperbolic octahedra with nontrivial symmetry},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {74--86},
     publisher = {mathdoc},
     volume = {51},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2013_51_a4/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - On the volume of hyperbolic octahedra with nontrivial symmetry
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2013
SP  - 74
EP  - 86
VL  - 51
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2013_51_a4/
LA  - ru
ID  - CMFD_2013_51_a4
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T On the volume of hyperbolic octahedra with nontrivial symmetry
%J Contemporary Mathematics. Fundamental Directions
%D 2013
%P 74-86
%V 51
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2013_51_a4/
%G ru
%F CMFD_2013_51_a4
V. A. Krasnov. On the volume of hyperbolic octahedra with nontrivial symmetry. Contemporary Mathematics. Fundamental Directions, Topology, Tome 51 (2013), pp. 74-86. http://geodesic.mathdoc.fr/item/CMFD_2013_51_a4/