On the volume of hyperbolic octahedra with nontrivial symmetry
Contemporary Mathematics. Fundamental Directions, Topology, Tome 51 (2013), pp. 74-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper from Derevnin–Mednykh's formula we obtain integral formulas for the volume of an arbitrary hyperbolic octahedron with $\mathrm{mmm}$- and $2|\mathrm m$-symmetry in terms of dihedral angles.
@article{CMFD_2013_51_a4,
     author = {V. A. Krasnov},
     title = {On the volume of hyperbolic octahedra with nontrivial symmetry},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {74--86},
     publisher = {mathdoc},
     volume = {51},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2013_51_a4/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - On the volume of hyperbolic octahedra with nontrivial symmetry
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2013
SP  - 74
EP  - 86
VL  - 51
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2013_51_a4/
LA  - ru
ID  - CMFD_2013_51_a4
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T On the volume of hyperbolic octahedra with nontrivial symmetry
%J Contemporary Mathematics. Fundamental Directions
%D 2013
%P 74-86
%V 51
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2013_51_a4/
%G ru
%F CMFD_2013_51_a4
V. A. Krasnov. On the volume of hyperbolic octahedra with nontrivial symmetry. Contemporary Mathematics. Fundamental Directions, Topology, Tome 51 (2013), pp. 74-86. http://geodesic.mathdoc.fr/item/CMFD_2013_51_a4/

[1] Abrosimov N. V., “Ob ob'emakh mnogogrannikov v prostranstve postoyannoi krivizny”, Vestn. Kemerov. gos. un-ta, 3:1(47) (2011), 7–13

[2] Abrosimov N. V., Godoi-Molina M., Mednykh A. D., “Ob ob'eme sfericheskogo oktaedra s simmetriyami”, Sovrem. mat. i ee prilozh., 60 (2008), 3–12 | MR

[3] Alekseevskii D. V., Vinberg E. B., Solodovnikov A. S., “Geometriya prostranstv postoyannoi krivizny”, Itogi nauki i tekhniki. Sovr. probl. mat. Fundam. napravleniya, 29, 1988, 5–146 | MR | Zbl

[4] Baigonakova G. A., Godoi-Molina M., Mednykh A. D., “O geometricheskikh svoistvakh giperbolicheskogo oktaedra, obladayuschego mmm-simmetriei”, Vestn. Kemerov. gos. un-ta, 3:1(47) (2011), 13–18

[5] Galiulin R. V., Mikhalev S. N., Sabitov I. Kh., “Nekotorye prilozheniya formuly dlya ob'ema oktaedra”, Mat. zametki, 76:1 (2004), 27–43 | DOI | MR | Zbl

[6] Lobachevskii N. I., Polnoe sobr. soch., v. 3, Voobrazhaemaya geometriya, M.–L., 1949

[7] Sabitov I. Kh., Ob'emy mnogogrannikov, MTsNMO, M., 2009

[8] Bolyai J., Appendix – The theory of space, ed. F. Karteszi, Budapest, 1987 | MR

[9] Cho Yu., Kim H., “On the volume formula for hyperbolic tetrahedra”, Discrete Comput. Geom., 22 (1999), 347–366 | DOI | MR | Zbl

[10] Derevnin D. A., Mednykh A. D., “A formula for the volume of hyperbolic tetrahedron”, Rus. Math. Surv., 60:2 (2005), 346–348 | DOI | MR | Zbl

[11] Kneser H., “Der Simplexinhalt in der nichteuklidischen Geometrie”, Deutsche Math., 1 (1936), 337–340 | Zbl

[12] Leibon G., The symmetries of hyperbolic volume, Preprint, 2002

[13] Milnor J., “Hyperbolic geometry: the first 150 years”, Bull. Amer. Math. Soc., 6:1 (1982), 307–332 | DOI | MR

[14] Mohanty Y., “The Regge symmetry is a scissors congruence in hyperbolic space”, Algebr. Geom. Topol., 3 (2003), 1–31 | DOI | MR | Zbl

[15] Murakami J., Ushijima A., “A volume formula for hyperbolic tetrahedra in terms of edge lengths”, J. Geom., 83:1–2 (2005), 153–163 | DOI | MR | Zbl

[16] Murakami J., Yano M., “On the volume of a hyperbolic and spherical tetrahedron”, Comm. Anal. Geom., 13 (2005), 379–400 | DOI | MR | Zbl

[17] Schläfli L., “Theorie der vielfachen Kontinuität”, Gesammelte mathematische Abhandlungen, Birkhäuser, Basel, 1950 | DOI

[18] Sforza G., “Spazi metrico-proiettivi”, Ric. Esten. Different. Ser., 8:3 (1906), 3–66

[19] Ushijima A., “A volume formula for generalized hyperbolic tetrahedra”, Non-Euclid. Geom., 581 (2006), 249–265 | DOI | MR | Zbl