Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2013_51_a4, author = {V. A. Krasnov}, title = {On the volume of hyperbolic octahedra with nontrivial symmetry}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {74--86}, publisher = {mathdoc}, volume = {51}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2013_51_a4/} }
V. A. Krasnov. On the volume of hyperbolic octahedra with nontrivial symmetry. Contemporary Mathematics. Fundamental Directions, Topology, Tome 51 (2013), pp. 74-86. http://geodesic.mathdoc.fr/item/CMFD_2013_51_a4/
[1] Abrosimov N. V., “Ob ob'emakh mnogogrannikov v prostranstve postoyannoi krivizny”, Vestn. Kemerov. gos. un-ta, 3:1(47) (2011), 7–13
[2] Abrosimov N. V., Godoi-Molina M., Mednykh A. D., “Ob ob'eme sfericheskogo oktaedra s simmetriyami”, Sovrem. mat. i ee prilozh., 60 (2008), 3–12 | MR
[3] Alekseevskii D. V., Vinberg E. B., Solodovnikov A. S., “Geometriya prostranstv postoyannoi krivizny”, Itogi nauki i tekhniki. Sovr. probl. mat. Fundam. napravleniya, 29, 1988, 5–146 | MR | Zbl
[4] Baigonakova G. A., Godoi-Molina M., Mednykh A. D., “O geometricheskikh svoistvakh giperbolicheskogo oktaedra, obladayuschego mmm-simmetriei”, Vestn. Kemerov. gos. un-ta, 3:1(47) (2011), 13–18
[5] Galiulin R. V., Mikhalev S. N., Sabitov I. Kh., “Nekotorye prilozheniya formuly dlya ob'ema oktaedra”, Mat. zametki, 76:1 (2004), 27–43 | DOI | MR | Zbl
[6] Lobachevskii N. I., Polnoe sobr. soch., v. 3, Voobrazhaemaya geometriya, M.–L., 1949
[7] Sabitov I. Kh., Ob'emy mnogogrannikov, MTsNMO, M., 2009
[8] Bolyai J., Appendix – The theory of space, ed. F. Karteszi, Budapest, 1987 | MR
[9] Cho Yu., Kim H., “On the volume formula for hyperbolic tetrahedra”, Discrete Comput. Geom., 22 (1999), 347–366 | DOI | MR | Zbl
[10] Derevnin D. A., Mednykh A. D., “A formula for the volume of hyperbolic tetrahedron”, Rus. Math. Surv., 60:2 (2005), 346–348 | DOI | MR | Zbl
[11] Kneser H., “Der Simplexinhalt in der nichteuklidischen Geometrie”, Deutsche Math., 1 (1936), 337–340 | Zbl
[12] Leibon G., The symmetries of hyperbolic volume, Preprint, 2002
[13] Milnor J., “Hyperbolic geometry: the first 150 years”, Bull. Amer. Math. Soc., 6:1 (1982), 307–332 | DOI | MR
[14] Mohanty Y., “The Regge symmetry is a scissors congruence in hyperbolic space”, Algebr. Geom. Topol., 3 (2003), 1–31 | DOI | MR | Zbl
[15] Murakami J., Ushijima A., “A volume formula for hyperbolic tetrahedra in terms of edge lengths”, J. Geom., 83:1–2 (2005), 153–163 | DOI | MR | Zbl
[16] Murakami J., Yano M., “On the volume of a hyperbolic and spherical tetrahedron”, Comm. Anal. Geom., 13 (2005), 379–400 | DOI | MR | Zbl
[17] Schläfli L., “Theorie der vielfachen Kontinuität”, Gesammelte mathematische Abhandlungen, Birkhäuser, Basel, 1950 | DOI
[18] Sforza G., “Spazi metrico-proiettivi”, Ric. Esten. Different. Ser., 8:3 (1906), 3–66
[19] Ushijima A., “A volume formula for generalized hyperbolic tetrahedra”, Non-Euclid. Geom., 581 (2006), 249–265 | DOI | MR | Zbl