The Neumann problem for elliptic systems on a~plane
Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 4, Tome 48 (2013), pp. 120-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

Second order elliptic systems with constant leading coefficients are considered. It is shown that the Bitsadze definition of weakly connected elliptic systems is equivalent to the known Shapiro–Lopatinskiy condition with respect to the Dirichlet problem for weakly connected elliptic systems. An analogue of potentials of double layer for these systems is introduced in the frame of functional theoretic approach. With the help of these potentials all solutions are described in the Holder $C^\mu(D)$ and Hardy $h^p(D)$ classes as well as in the class $C(\overline D)$ of all continuous functions.
@article{CMFD_2013_48_a9,
     author = {A. Soldatov},
     title = {The {Neumann} problem for elliptic systems on a~plane},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {120--133},
     publisher = {mathdoc},
     volume = {48},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2013_48_a9/}
}
TY  - JOUR
AU  - A. Soldatov
TI  - The Neumann problem for elliptic systems on a~plane
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2013
SP  - 120
EP  - 133
VL  - 48
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2013_48_a9/
LA  - ru
ID  - CMFD_2013_48_a9
ER  - 
%0 Journal Article
%A A. Soldatov
%T The Neumann problem for elliptic systems on a~plane
%J Contemporary Mathematics. Fundamental Directions
%D 2013
%P 120-133
%V 48
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2013_48_a9/
%G ru
%F CMFD_2013_48_a9
A. Soldatov. The Neumann problem for elliptic systems on a~plane. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 4, Tome 48 (2013), pp. 120-133. http://geodesic.mathdoc.fr/item/CMFD_2013_48_a9/

[1] Bitsadze A. V., Kraevye zadachi dlya ellipticheskikh uravnenii vtorogo poryadka, Nauka, M., 1966 | Zbl

[2] Soldatov A. P., “Metod teopii funktsii v kpaevykh zadachakh na ploskosti. I. Gladkii sluchai”, Izv. AH SSSR. Sep. Mat., 55:5 (1991), 1070–1100 | MR | Zbl

[3] Soldatov A. P., “O pervoi i vtoroi kraevykh zadachakh dlya ellipticheskikh sistem na ploskosti”, Diff. uravn., 39:5 (2003), 674–686 | MR | Zbl

[4] Soldatov A. P., “Giperanaliticheskie funktsii i ikh prilozheniya”, Sovrem. mat. i ee prilozh., 15 (2004), 142–199

[5] Soldatov A. P., “Ellipticheskie sistemy vtorogo poryadka v poluploskosti”, Izv. RAN. Ser. Mat., 70:6 (2006), 161–192 | DOI | MR | Zbl

[6] Soldatov A. P., “Prostranstvo Khardi reshenii ellipticheskikh sistem pervogo poryadka”, Dokl. RAN, 416:1 (2007), 26–30 | MR | Zbl

[7] Soldatov A. P., Chernova O. V., “Zadacha Rimana–Gilberta dlya ellipticheskoi sistemy pervogo poryadka v klassakh Geldera”, Nauch. vedomosti BelGU, 13(68):17/2 (2009), 115–121

[8] Tovmasyan N. E., “Obschaya kraevaya zadacha dlya ellipticheskikh sistem vtorogo poryadka s postoyannymi koeffitsientami”, Diff. uravn., 2:1 (1966), 3–23

[9] Douglis A. A., “A function-theoretic approach to elliptic systems of equations in two variables”, Comm. Pure Appl. Math., 6 (1953), 259–289 | DOI | MR | Zbl

[10] Gilbert R. P., Wendland W. L., “Analytic, generalized, hyper-analytic function theory and an application to elasticity”, Proc. Roy. Soc. Edinburgh Sect. A, 73 (1975), 317–371 | MR

[11] Hile G. N., “Function theory for a class of elliptic systems in the plane”, J. Differential Equations, 32:3 (1979), 369–387 | DOI | MR | Zbl

[12] Soldatov A. P., “On representation of solutions of second order elliptic systems on the plane”, More progresses in analysis, Proceedings of the 5th International ISAAC Congress (Catania, Italy, 25–30 July 2005), World Scientific, Hackensack, 2009, 1171–1184 | Zbl