On dynamical properties of a~one-parameter family of transformations arising in averaging of semigroups
Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 4, Tome 48 (2013), pp. 93-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

To describe the dynamics of quantum systems with degenerate symmetric but not self-adjoint Hamiltonian, we consider the Naimark extension of the Hamiltonian to a self-adjoint operator in an extended Hilbert space. We relate to the symmetric Hamiltonian a one-parameter family of averaged dynamical transformations of the set of quantum states obtained from a unitary group of transformations of the extended Hilbert space by using a conditional expected value to an algebra of bounded operators acting in the original space. We establish the absence of the semigroup property and injectivity of the family of averaged dynamical transformations. We obtain a representation of trajectories of the averaged family of dynamical transformations by maximum points of functionals on the space of mappings of the time interval into the set of quantum states.
@article{CMFD_2013_48_a7,
     author = {V. Sakbaev},
     title = {On dynamical properties of a~one-parameter family of transformations arising in averaging of semigroups},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {93--110},
     publisher = {mathdoc},
     volume = {48},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2013_48_a7/}
}
TY  - JOUR
AU  - V. Sakbaev
TI  - On dynamical properties of a~one-parameter family of transformations arising in averaging of semigroups
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2013
SP  - 93
EP  - 110
VL  - 48
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2013_48_a7/
LA  - ru
ID  - CMFD_2013_48_a7
ER  - 
%0 Journal Article
%A V. Sakbaev
%T On dynamical properties of a~one-parameter family of transformations arising in averaging of semigroups
%J Contemporary Mathematics. Fundamental Directions
%D 2013
%P 93-110
%V 48
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2013_48_a7/
%G ru
%F CMFD_2013_48_a7
V. Sakbaev. On dynamical properties of a~one-parameter family of transformations arising in averaging of semigroups. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 4, Tome 48 (2013), pp. 93-110. http://geodesic.mathdoc.fr/item/CMFD_2013_48_a7/

[1] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | MR | Zbl

[2] Bogachev V. I., Osnovy teorii mery, v. 2, URSS, M., 2006

[3] Bogolyubov N. N., “O nekotorykh ergodicheskikh svoistvakh nepreryvnykh grupp preobrazovanii”, Izbrannye trudy, v. 1, Naukova dumka, Kiev, 1969, 561–569

[4] Bratelli U., Robinson D., Operatornye algebry i kvantovaya statisticheskaya mekhanika, Mir, M., 1982 | MR

[5] Burbaki N., Integrirovanie. Mery na lokalno kompaktnykh prostranstvakh, mery na otdelimykh prostranstvakh, Nauka, M., 1977

[6] Vulikh B. Z., Kratkii kurs teorii funktsii veschestvennoi peremennoi, Nauka, M., 1965 | Zbl

[7] Varadarain V. S., “Mery na topologicheskikh prostranstvakh”, Mat. sb., 55(97):1 (1961), 35–100 | MR | Zbl

[8] Gelfand I., “Abstrakte funktionen und lineare operatoren”, Mat. sb., 4(46):2 (1938), 235–286 | Zbl

[9] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, URSS, M., 2004

[10] Kozlov V. V., Termodinamicheskoe ravnovesie po Gibbsu i Puankare, Sovremennaya matematika, M.–Izhevsk, 2002 | Zbl

[11] Sakbaev V. Zh., “O funktsionalakh na resheniyakh zadachi Koshi dlya uravneniya Shrëdingera s vyrozhdeniem na polupryamoi”, Zhurn. vych. mat. i mat. fiz., 44:9 (2004), 1654–1673 | MR | Zbl

[12] Sakbaev V. Zh., “O mnogoznachnykh otobrazheniyakh, zadavaemykh regulyarizatsiei uravneniya Shredingera s vyrozhdeniem”, Zhurn. vych. mat. i mat. fiz., 46:4 (2006), 683–699 | MR | Zbl

[13] Sakbaev V. Zh., “O spektralnykh aspektakh regulyarizatsii zadachi Koshi dlya vyrozhdennogo uravneniya”, Tr. MIAN, 261, 2008, 258–267 | MR | Zbl

[14] Sakbaev V. Zh., “O dinamike vyrozhdennoi kvantovoi sistemy v prostranstve funktsii, integriruemykh po konechno-additivnoi mere”, Tr. MFTI, 1:4 (2009), 126–147

[15] Sakbaev V. Zh., “Ob usrednenii kvantovykh dinamicheskikh polugrupp”, TMF, 164:3 (2010), 455–463 | DOI | Zbl

[16] Sakbaev V. Zh., “O mnozhestve kvantovykh sostoyanii i ego usrednennykh dinamicheskikh preobrazovaniyakh”, Izv. vuzov. Ser. Mat., 2011, no. 10, 48–58 | MR | Zbl

[17] Sakbaev V. Zh., “O dinamike mnozhestva sostoyanii kvantovoi sistemy s vyrozhdennym gamiltonianom”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-Mat., 2011, no. 2(23), 200–220

[18] Kholevo A. S., Veroyatnostnye i statisticheskie aspekty kvantovoi mekhaniki, M.–Izhevsk, 2003

[19] Edvards R., Funktsionalnyi analiz, Mir, M., 1969

[20] Emkh Zh., Algebraicheskie metody v statisticheskoi mekhanike i kvantovoi teorii polya, Mir, M., 1976

[21] Accardi L., Lu Y. G., Volovich I. V., Quantum theory and its stochastic limit, Springer, 2001 | MR | Zbl

[22] Dinculeanu N., Vector integration and stochastic integration in Banach spaces, Wiley, New York, 2000 | MR | Zbl

[23] Sakbaev V. Zh., “Stochastic properties of degenerated quantum systems”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 13:1 (2010), 65–85 | DOI | MR | Zbl

[24] Shirokov M. E., “Entropy reduction of quantum measurements”, J. Math. Phys., 52:5 (2011), 052202 | DOI | MR

[25] Srinivas M. D., “Collapse postulate for observables with continuous spectra”, Comm. Math. Phys., 71:2 (1980), 135–158 | DOI | MR