Homogenization of stratified dilatant fluid
Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 4, Tome 48 (2013), pp. 75-83

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the behavior of the stationary magnetic hydrodynamical boundary layer of a dilatant fluid flowing through a porous obstacle. We consider a family of boundary value problems with a small parameter where micro-inhomogeneities are concentrated on the boundary of the domain (the original velocity profile depends on a small parameter). We construct an averaged problem and prove convergence of the solution of the original problem to that of the averaged one. Thus we describe the effective behavior of the micro-inhomogeneous fluid.
@article{CMFD_2013_48_a5,
     author = {A. Yu. Linkevich and S. V. Spiridonov and G. A. Chechkin},
     title = {Homogenization of stratified dilatant fluid},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {75--83},
     publisher = {mathdoc},
     volume = {48},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2013_48_a5/}
}
TY  - JOUR
AU  - A. Yu. Linkevich
AU  - S. V. Spiridonov
AU  - G. A. Chechkin
TI  - Homogenization of stratified dilatant fluid
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2013
SP  - 75
EP  - 83
VL  - 48
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2013_48_a5/
LA  - ru
ID  - CMFD_2013_48_a5
ER  - 
%0 Journal Article
%A A. Yu. Linkevich
%A S. V. Spiridonov
%A G. A. Chechkin
%T Homogenization of stratified dilatant fluid
%J Contemporary Mathematics. Fundamental Directions
%D 2013
%P 75-83
%V 48
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2013_48_a5/
%G ru
%F CMFD_2013_48_a5
A. Yu. Linkevich; S. V. Spiridonov; G. A. Chechkin. Homogenization of stratified dilatant fluid. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 4, Tome 48 (2013), pp. 75-83. http://geodesic.mathdoc.fr/item/CMFD_2013_48_a5/