Glaeser's type interpolation inequalities
Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 4, Tome 48 (2013), pp. 51-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

We report on some recent common research of the authors, adding a few new results on interpolation inequalities for nonnegative viscosity solutions of elliptic nonlinear partial differential equations.
@article{CMFD_2013_48_a3,
     author = {I. Capuzzo Dolcetta and A. Vitolo},
     title = {Glaeser's type interpolation inequalities},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {51--60},
     publisher = {mathdoc},
     volume = {48},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2013_48_a3/}
}
TY  - JOUR
AU  - I. Capuzzo Dolcetta
AU  - A. Vitolo
TI  - Glaeser's type interpolation inequalities
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2013
SP  - 51
EP  - 60
VL  - 48
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2013_48_a3/
LA  - ru
ID  - CMFD_2013_48_a3
ER  - 
%0 Journal Article
%A I. Capuzzo Dolcetta
%A A. Vitolo
%T Glaeser's type interpolation inequalities
%J Contemporary Mathematics. Fundamental Directions
%D 2013
%P 51-60
%V 48
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2013_48_a3/
%G ru
%F CMFD_2013_48_a3
I. Capuzzo Dolcetta; A. Vitolo. Glaeser's type interpolation inequalities. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 4, Tome 48 (2013), pp. 51-60. http://geodesic.mathdoc.fr/item/CMFD_2013_48_a3/

[1] Mazya V. G., Shaposhnikova T. O., “Tochnye potochechnye interpolyatsionnye neravenstva dlya proizvodnykh”, Funkts. analiz i ego prilozh., 36:1 (2002), 36–58 | DOI | MR | Zbl

[2] Amendola M. E., Rossi L., Vitolo A., “Harnack inequalities and ABP estimates for nonlinear second order elliptic equations in unbounded domains”, Abstr. Appl. Anal., 2008 (2008), ID 178534 | MR | Zbl

[3] Bardi M., Capuzzo Dolcetta I., Optimal control and viscosity solutions of Hamilton—Jacobi equations, Birkhäuser, Boston, 1997 | MR | Zbl

[4] Bardi M., Crandall M. G., Evans L. C., Soner H. M., Souganidis P. E., Viscosity solutions and applications, Springer, Berlin, 1997 | Zbl

[5] Caffarelli L. A., “Interior a priori estimates for solutions of fully nonlinear equations”, Ann. Math. (2), 130:1 (1989), 189–213 | DOI | MR | Zbl

[6] Caffarelli L. A., Cabré X., Fully nonlinear elliptic equations, AMS Colloquium Publications, Providence, 1995 | MR | Zbl

[7] Cannarsa P., Sinestrari C., Semiconcave functions, Hamilton—Jacobi equations and optimal control, Birkhäuser, Boston, 2004 | MR | Zbl

[8] Capuzzo Dolcetta I., Vitolo A., “Gradient and Hölder estimates for positive solutions of Pucci type equations”, C. R. Math., Acad. Sci. Paris, 346:9–10 (2008), 527–532 | DOI | MR | Zbl

[9] Capuzzo Dolcetta I., Vitolo A., “$C^{1,\alpha}$ and Glaeser type estimates”, Rend. Mat. Ser. VII, 29:1 (2009), 17–27 | MR | Zbl

[10] Capuzzo Dolcetta I., Vitolo A., “Glaeser's type gradient estimates for nonnegative solutions of fully nonlinear elliptic equations”, Discrete Contin. Dyn. Syst., 28:2 (2010), 539–557 | DOI | MR | Zbl

[11] Capuzzo Dolcetta I., Vitolo A., “Pointwise gradient estimates of Glaeser's type”, Boll. Unione Mat. Ital. (9), 5:2 (2012), 211–224 | MR | Zbl

[12] Crandall M. G., Ishii H., Lions P. L., “User's guide to viscosity solutions of second order partial differential equations”, Bull. Amer. Math. Soc. (N.S.), 27:1 (1992), 1–67 | DOI | MR | Zbl

[13] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Springer, New York, 1983 | MR | Zbl

[14] Glaeser G., “Racine carrée d'une fonction différentiable”, Ann. Ist. Fourier, 13:2 (1963), 203–210 | DOI | MR | Zbl

[15] Koike S., Takahashi T., “Remarks on regularity of viscosity solutions for fully nonlinear uniformly elliptic PDEs with measurable ingredients”, Adv. Differ. Eq., 7:4 (2002), 493–512 | MR | Zbl

[16] Kolmogorov A. N., “Une généralization de l'inégalité de M. J. Hadamard entre les bornes supériores des dérivées successives d'une fonction”, C. R. Math. Acad. Sci. Paris, 207 (1963), 764–765

[17] Landau E., “Einige Ungleichungen für zweimal differenzierbäre Funktionen”, Lond. M. S. Proc. (2), 13 (1913), 43–49 | MR | Zbl

[18] Li Y. Y., Nirenberg L., “Generalization of a well-known inequality”, Progr. Nonlinear Differential Equations Appl., 66 (2006), 365–370 | DOI | MR | Zbl

[19] Maz'ya V. G., Kufner A., “Variations on the theme of the inequality $(f')^2\le2f\sup|f''|$”, Manuscripta Math., 56 (1986), 89–104 | DOI | MR