Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2013_48_a2, author = {L. S. Efremova}, title = {Absence of $C^1$-$\Omega$-explosion in the space of smooth simplest skew products}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {36--50}, publisher = {mathdoc}, volume = {48}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2013_48_a2/} }
TY - JOUR AU - L. S. Efremova TI - Absence of $C^1$-$\Omega$-explosion in the space of smooth simplest skew products JO - Contemporary Mathematics. Fundamental Directions PY - 2013 SP - 36 EP - 50 VL - 48 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2013_48_a2/ LA - ru ID - CMFD_2013_48_a2 ER -
L. S. Efremova. Absence of $C^1$-$\Omega$-explosion in the space of smooth simplest skew products. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 4, Tome 48 (2013), pp. 36-50. http://geodesic.mathdoc.fr/item/CMFD_2013_48_a2/
[1] Anosov D. V., “Dinamicheskie sistemy v 60-e gody: giperbolicheskaya revolyutsiya”, Matematicheskie sobytiya XX veka, Fazis, M., 2003, 1–18
[2] Anosov D. V., Aranson S. Kh., Grines V. Z., Plykin R. V., Sataev E. A., Safronov A. V., Solodov V. V., Starkov A. N., Stepin A. M., Shlyachkov S. V., “Dinamicheskie sistemy s giperbolicheskim povedeniem”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravl., 66, 1991, 5–242 | MR | Zbl
[3] Barkovskii Yu. S., Levin G. M., “O predelnom kantorovom mnozhestve”, Usp. mat. nauk, 35:2(212) (1980), 201–202 | MR | Zbl
[4] Blinova E. V., Efremova L. S., “Ob $\Omega$-vzryvakh v prosteishikh $C^1$-gladkikh kosykh proizvedeniyakh otobrazhenii intervala”, Sovrem. mat. i ee prilozh., 53 (2008), 71–81
[5] Bronshtein I. U., Neavtonomnye dinamicheskie sistemy, Shtiintsa, Kishinev, 1984 | MR
[6] Gonchenko S. V., Stenkin O. V., “Gomoklinicheskii $\Omega$-vzryv: intervaly giperbolichnosti i ikh granitsy”, Nelineinaya dinamika, 7:1 (2011), 3–24
[7] Efremova L. S., “O ponyatii $\Omega$-funktsii kosogo proizvedeniya otobrazhenii intervala”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee prilozh. Temat. obz., 67, 1999, 129–160 | MR | Zbl
[8] Efremova L. S., “Differentsialnye svoistva i prityagivayuschie mnozhestva prosteishego kosogo proizvedeniya otobrazhenii intervala”, Mat. sb., 201:6 (2010), 93–130 | DOI | MR | Zbl
[9] Efremova L. S., “O $C^0$-$\Omega$-vzryvakh v gladkikh kosykh proizvedeniyakh otobrazhenii intervala s zamknutym mnozhestvom periodicheskikh tochek”, Vestn. NNGU im. N. I. Lobachevskogo, 3:1 (2012), 130–136
[10] Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999
[11] Kuratovskii K., Topologiya, v. 1, 2, Mir, M., 1966 ; т. 2, 1969 | MR
[12] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, RKhD, M.–Izhevsk, 2004
[13] Nitetski Z., Vvedenie v differentsialnuyu dinamiku, Mir, M., 1975 | MR
[14] Sharkovskii A. N., “O tsiklakh i strukture nepreryvnogo otobrazheniya”, Ukr. mat. zhurn., 17:3 (1965), 104–111 | MR
[15] Sharkovskii A. N., Dobrynskii V. A., “Nebluzhdayuschie tochki dinamicheskikh sistem”, Dinam. sist. i voprosy ustoich. reshenii differents. uravnenii, In-t matematiki AN Ukrainy, Kiev, 1973, 165–174
[16] Sharkovskii A. N., Maistrenko Yu. L., Romanenko E. Yu., Raznostnye uravneniya i ikh prilozheniya, Naukova dumka, Kiev, 1986 | MR
[17] Block L., Coppel W. A., Dynamics in one dimension, Springer, Berlin–Hedelberg–New York, 1992 | MR | Zbl
[18] Block L., Franke J. F., “The chain recurrent set, attractors, and explosions”, Ergodic Theory Dynam. Systems, 5 (1985), 321–327 | DOI | MR | Zbl
[19] Bruno D., Lopez V. J., “Asymptotical periodicity for analytic triangular maps of type less than $2^\infty$”, J. Math. Anal. Appl., 361:1 (2010), 1–9 | DOI | MR | Zbl
[20] Coven E. M., Nitecki Z., “Nonwandering sets of the powers of maps of the interval”, Ergodic Theory Dynam. Systems, 1 (1981), 9–31 | DOI | MR | Zbl
[21] Efremova L. S., “Absence of $C^1$-$\Omega$-blow ups and period doubling bifurcations in smooth simplest skew products of maps of an interval”, Mezhd. konf. “Analiz i osobennosti”, posvyasch. 75-letiyu so dnya rozhd. V. I. Arnolda (Moskva, 17–21 dekabrya 2012), Abstracts, MIAN, 2012, 131–132
[22] Efremova L. S., “Example of the smooth skew product in the plane with the one-dimensional ramified continuum as the global attractor”, ESAIM Proc., 36 (2012), 15–25 | DOI | MR
[23] Efremova L. S., “Remarks on the nonwandering set of skew products with a closed set of periodic points of the quotient map”, Springer Proc. Math., 2013 (to appear)
[24] Hirsch M. W., Pugh C., “Stable manifolds and hyperbolic sets”, Global Analysis, Proc. Sympos. Pure Math., 14, Providence, 1970, 133–163 | DOI | MR | Zbl
[25] Kloeden P. E., “On Sharkovsky's cycle coexistence ordering”, Bull. Aust. Math. Soc., 20 (1979), 171–177 | DOI | MR
[26] Misiurewicz M., “Structure of mappings of an interval with zero topological entropy”, Inst. Hautes Études Sci. Publ. Math., 53:1 (1981), 5–16 | DOI | MR
[27] Nitecki Z., “Maps of the interval with closed periodic set”, Proc. Amer. Math. Soc., 85:3 (1982), 451–456 | DOI | MR | Zbl
[28] Nitecki Z., Shub M., “Filtrations, decompositions and explosions”, Amer. J. Math., 97:4 (1976), 1029–1047 | DOI | MR | Zbl
[29] Palis J., “$\Omega$-explosions”, Proc. Amer. Math. Soc., 27:1 (1971), 85–90 | MR | Zbl
[30] Shub M., Smale S., “Beyond hyperbolicity”, Ann. Math. (2), 96:3 (1972), 587–591 | DOI | MR | Zbl