Absence of $C^1$-$\Omega$-explosion in the space of smooth simplest skew products
Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 4, Tome 48 (2013), pp. 36-50

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a detailed proof of absence of a $C^1$-$\Omega$-explosion in the space of $C^1$-regular simplest skew products of mappings of an interval (i.e., skew products of mappings of an interval with a closed set of periodic points). We study the influence of $C^1$-perturbations (of the class of skew products) to the set of periods of the periodic points of $C^1$-regular simplest skew products, and describe the peculiarities of period doubling bifurcations of the periodic points.
@article{CMFD_2013_48_a2,
     author = {L. S. Efremova},
     title = {Absence of $C^1$-$\Omega$-explosion in the space of smooth simplest skew products},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {36--50},
     publisher = {mathdoc},
     volume = {48},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2013_48_a2/}
}
TY  - JOUR
AU  - L. S. Efremova
TI  - Absence of $C^1$-$\Omega$-explosion in the space of smooth simplest skew products
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2013
SP  - 36
EP  - 50
VL  - 48
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2013_48_a2/
LA  - ru
ID  - CMFD_2013_48_a2
ER  - 
%0 Journal Article
%A L. S. Efremova
%T Absence of $C^1$-$\Omega$-explosion in the space of smooth simplest skew products
%J Contemporary Mathematics. Fundamental Directions
%D 2013
%P 36-50
%V 48
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2013_48_a2/
%G ru
%F CMFD_2013_48_a2
L. S. Efremova. Absence of $C^1$-$\Omega$-explosion in the space of smooth simplest skew products. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 4, Tome 48 (2013), pp. 36-50. http://geodesic.mathdoc.fr/item/CMFD_2013_48_a2/