Synchronizability of networks with strongly delayed links: a~universal classification
Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 4, Tome 48 (2013), pp. 134-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that for large coupling delays the synchronizability of delay-coupled networks of identical units relates in a simple way to the spectral properties of the network topology. The master stability function used to determine stability of synchronous solutions has a universal structure in the limit of large delay: it is rotationally symmetric around the origin and increases monotonically with the radius in the complex plane. We give details of the proof of this structure and discuss the resulting universal classification of networks with respect to their synchronization properties. We illustrate this classification by means of several prototype network topologies.
@article{CMFD_2013_48_a10,
     author = {V. Flunkert and S. Yanchuk and T. Dahms and E. Sch\"oll},
     title = {Synchronizability of networks with strongly delayed links: a~universal classification},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {134--148},
     publisher = {mathdoc},
     volume = {48},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2013_48_a10/}
}
TY  - JOUR
AU  - V. Flunkert
AU  - S. Yanchuk
AU  - T. Dahms
AU  - E. Schöll
TI  - Synchronizability of networks with strongly delayed links: a~universal classification
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2013
SP  - 134
EP  - 148
VL  - 48
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2013_48_a10/
LA  - ru
ID  - CMFD_2013_48_a10
ER  - 
%0 Journal Article
%A V. Flunkert
%A S. Yanchuk
%A T. Dahms
%A E. Schöll
%T Synchronizability of networks with strongly delayed links: a~universal classification
%J Contemporary Mathematics. Fundamental Directions
%D 2013
%P 134-148
%V 48
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2013_48_a10/
%G ru
%F CMFD_2013_48_a10
V. Flunkert; S. Yanchuk; T. Dahms; E. Schöll. Synchronizability of networks with strongly delayed links: a~universal classification. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 4, Tome 48 (2013), pp. 134-148. http://geodesic.mathdoc.fr/item/CMFD_2013_48_a10/

[1] Argyris A., Syvridis D., Larger L., Annovazzi-Lodi V., Colet P., Fischer I., García-Ojalvo J., Mirasso C. R., Pesquera L., Shore K. A., “Chaos-based communications at high bit rates using commercial fibreoptic links”, Nature, 438 (2005), 343–346 | DOI

[2] Ashwin P., Buescu J., Stewart I., “Bubbling of attractors and synchronisation of chaotic oscillators”, Phys. Lett. A, 193 (1994), 126–139 | DOI | MR | Zbl

[3] Ashwin P., Buescu J., Stewart I., “From attractor to chaotic saddle: a tale of transverse instability”, Nonlinearity, 9:3 (1996), 703–737 | DOI | MR | Zbl

[4] Atay F. M. (ed.), Complex time-delay systems, Springer, Berlin–Heidelberg, 2010 | MR

[5] Atay F. M., Jost J., Wende A., “Delays, connection topology, and synchronization of coupled chaotic maps”, Phys. Rev. Lett., 92 (2004), 144101 | DOI

[6] Balanov A. G., Janson N. B., Postnov D. E., Sosnovtseva O. V., Synchronization: from simple to complex, Springer, Berlin, 2009 | MR | Zbl

[7] Boccaletti S., Kurths J., Osipov G., Valladares D. L., Zhou C. S., “The synchronization of chaotic systems”, Phys. Rep., 366:1–2 (2002), 1–101 | DOI | MR | Zbl

[8] Brandstetter S. A., Dahlem M. A., Schöll E., “Interplay of time-delayed feedback control and temporally correlated noise in excitable systems”, Philos. Trans. R. Soc. Lond. Ser. A. Math. Phys. Eng. Sci., 368:1911 (2010), 391–421 | DOI | Zbl

[9] Carr T. W., Schwartz I. B., Kim M. Y., Roy R., “Delayed-mutual coupling dynamics of lasers: scaling laws and resonances”, SIAM J. Appl. Dyn. Syst., 5:4 (2006), 699–725 | DOI | MR | Zbl

[10] Choe C. U., Dahms T., Hövel P., Schöll E., “Controlling synchrony by delay coupling in networks: from in-phase to splay and cluster states”, Phys. Rev. E, 81 (2010), 025205(R) | DOI

[11] Choe C. U., Flunkert V., Hövel P., Benner H., Schöll E., “Conversion of stability in systems close to a Hopf bifurcation by time-delayed coupling”, Phys. Rev. E, 75 (2007), 046206 | DOI | MR

[12] Cvitanović P., “Dynamical averaging in terms of periodic orbits”, Physica D, 83:1–3 (1995), 109–123 | DOI | MR

[13] Cvitanović P., Artuso R., Mainieri R., Tanner G., Vattay G., Chaos: classical and quantum, Niels Bohr Institute, Copenhagen, 2008 http://ChaosBook.org

[14] Cvitanović P., Vattay G., “Entire Fredholm determinants for evaluation of semiclassical and thermodynamical spectra”, Phys. Rev. Lett., 71:25 (1993), 4138–4141 | DOI | MR | Zbl

[15] Dahlem M. A., Hiller G., Panchuk A., Schöll E., “Dynamics of delay-coupled excitable neural systems”, Int. J. Bifur. Chaos, 19:2 (2009), 745–753 | DOI | MR | Zbl

[16] Dhamala M., Jirsa V. K., Ding M., “Enhancement of neural synchrony by time delay”, Phys. Rev. Lett., 92 (2004), 074104 | DOI

[17] D'Huys O., Vicente R., Erneux T., Danckaert J., Fischer I., “Synchronization properties of network motifs: Influence of coupling delay and symmetry”, Chaos, 18 (2008), 037116 | DOI | MR

[18] Englert A., Kinzel W., Aviad Y., Butkovski M., Reidler I., Zigzag M., Kanter I., Rosenbluh M., “Zero lag synchronization of chaotic systems with time delayed couplings”, Phys. Rev. Lett., 104 (2010), 114102 | DOI

[19] Erzgräber H., Krauskopf B., Lenstra D., “Compound laser modes of mutually delay-coupled lasers”, SIAM J. Appl. Dyn. Syst., 5:1 (2006), 30–65 | DOI | MR | Zbl

[20] Fischer I., Liu Y., Davis P., “Synchronization of chaotic semiconductor laser dynamics on subnanosecond time scales and its potential for chaos communication”, Phys. Rev. A, 62:1 (2000), 011801 | DOI

[21] Fischer I., Vicente R., Buldú J. M., Peil M., Mirasso C. R., Torrent M. C., García-Ojalvo J., “Zero-lag long-range synchronization via dynamical relaying”, Phys. Rev. Lett., 97 (2006), 123902 | DOI

[22] Flunkert V., Delay-coupled complex systems, Springer, Heidelberg, 2011 | MR | Zbl

[23] Flunkert V., D'Huys O., Danckaert J., Fischer I., Schöll E., “Bubbling in delay-coupled lasers”, Phys. Rev. E, 79 (2009), 065201(R) | DOI

[24] Flunkert V., Yanchuk S., Dahms T., Schöll E., “Synchronizing distant nodes: a universal classification of networks”, Phys. Rev. Lett., 105 (2010), 254101 | DOI

[25] Gauthier D. J., Bienfang J. C., “Intermittent loss of synchronization in coupled chaotic oscillators: Toward a new criterion for high-quality synchronization”, Phys. Rev. Lett., 77:9 (1996), 1751–1754 | DOI

[26] Giacomelli G., Politi A., “Relationship between delayed and spatially extended dynamical systems”, Phys. Rev. Lett., 76:15 (1996), 2686–2689 | DOI

[27] Grebogi C., Ott E., Yorke J. A., “Unstable periodic orbits and the dimensions of multifractal chaotic attractors”, Phys. Rev. A, 37:5 (1988), 1711–1724 | DOI | MR

[28] Hauptmann C., Omel`chenko O., Popovych O. V., Maistrenko Y., Tass P. A., “Control of spatially patterned synchrony with multisite delayed feedback”, Phys. Rev. E, 76 (2007), 066209 | DOI | MR

[29] Heil T., Mulet J., Fischer I., Mirasso C. R., Peil M., Colet P., Elsäßer W., “On/off phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers”, IEEE J. Quantum Electron., 38:9 (2002), 1162–1170 | DOI

[30] Heiligenthal S., Dahms T., Yanchuk S., Jüngling T., Flunkert V., Kanter I., Schöll E., Kinzel W., “Strong and weak chaos in nonlinear networks with time-delayed couplings”, Phys. Rev. Lett., 107 (2011), 234102 | DOI

[31] Hicke K., D'Huys O., Flunkert V., Schöll E., Danckaert J., Fischer I., “Mismatch and synchronization: Influence of asymmetries in systems of two delay-coupled lasers”, Phys. Rev. E, 83 (2011), 056211 | DOI

[32] Hövel P., Dahlem M. A., Dahms T., Hiller G., Schöll E., “Time-delayed feedback control of delay-coupled neurosystems and lasers”, Preprints of the Second IFAC meeting related to analysis and control of chaotic systems (CHAOS09), 2009, arXiv: 0912.3395

[33] Hövel P., Dahlem M. A., Schöll E., “Control of synchronization in coupled neural systems by time-delayed feedback”, Int. J. Bifur. Chaos, 20:3 (2010), 813–825 | DOI | Zbl

[34] Illing L., Panda C. D., Shareshian L., “Isochronal chaos synchronization of delay-coupled optoelectronic oscillators”, Phys. Rev. E, 84 (2011), 016213 | DOI

[35] Just W., Pelster A., Schanz M., Schöll E., “Delayed complex systems”, Philos. Trans. R. Soc. Lond. Ser. A. Math. Phys. Eng. Sci., 368:1911 (2010), 303–304 | DOI | Zbl

[36] Kane D. M., Shore K. A. (eds.), Unlocking dynamical diversity: optical feedback effects on semiconductor lasers, Wiley VCH, Weinheim, 2005

[37] Kanter I., Aviad Y., Reidler I., Cohen E., Rosenbluh M., “An optical ultrafast random bit generator”, Nat. Photon., 4 (2009), 58–61 | DOI

[38] Kanter I., Kopelowitz E., Kinzel W., “Public channel cryptography: chaos synchronization and Hilbert's tenth problem”, Phys. Rev. Lett., 101 (2008), 084102 | DOI

[39] Kinzel W., Englert A., Kanter I., “On chaos synchronization and secure communication”, Philos. Trans. R. Soc. Lond. Ser. A. Math. Phys. Eng. Sci., 368 (2010), 379–389 | DOI | Zbl

[40] Kinzel W., Englert A., Reents G., Zigzag M., Kanter I., “Synchronization of networks of chaotic units with time-delayed couplings”, Phys. Rev. E, 79 (2009), 056207 | DOI

[41] Kinzel W., Kanter I., Secure communication with chaos synchronization, Wiley-VCH, Weinheim, 2008 | Zbl

[42] Klein E., Gross N., Rosenbluh M., Kinzel W., Khaykovich L., Kanter I., “Stable isochronal synchronization of mutually coupled chaotic lasers”, Phys. Rev. E, 73 (2006), 066214 | DOI

[43] Lai Y. C., Nagai Y., Grebogi C., “Characterization of the natural measure by unstable periodic orbits in chaotic attractors”, Phys. Rev. Lett., 79:4 (1997), 649–652 | DOI

[44] Landsman A. S., Schwartz I. B., “Complete chaotic synchronization in mutually coupled time-delay systems”, Phys. Rev. E, 75 (2007), 026201 | DOI

[45] Lehnert J., Dynamics of neural networks with delay, Magisterskaya dissertatsiya, Technische Universität, Berlin, 2010

[46] Lehnert J., Dahms T., Hövel P., Schöll E., “Loss of synchronization in complex neural networks with delay”, Europhys. Lett., 96 (2011), 60013 | DOI

[47] Lichtner M., Wolfrum M., Yanchuk S., “The spectrum of delay differential equations with large delay”, SIAM J. Math. Anal., 43:2 (2011), 788–802 | DOI | MR | Zbl

[48] Lüdge K. (ed.), Nonlinear laser dynamics – from quantum dots to cryptography, Wiley-VCH, Weinheim, 2011

[49] Masoller C., Torrent M. C., García-Ojalvo J., “Interplay of subthreshold activity, time-delay feedback, and noise on neuronal firing patterns”, Phys. Rev. E, 78 (2008), 041907 | DOI

[50] Mosekilde E., Maistrenko Y., Postnov D., Chaotic synchronization: applications to living systems, World Scientific, Singapore, 2002 | MR | Zbl

[51] Mulet J., Mirasso C. R., Heil T., Fischer I., “Synchronization scenario of two distant mutually coupled semiconductor lasers”, J. Opt. B, 6 (2004), 97–105 | DOI

[52] Nagai Y., Lai Y. C., “Periodic-orbit theory of the blowout bifurcation”, Phys. Rev. E, 56:4 (1997), 4031–4041 | DOI | MR

[53] Ott E., Sommerer J. C., “Blowout bifurcations: the occurrence of riddled basins and on-off intermittency”, Phys. Lett. A, 188:1 (1994), 39–47 | DOI

[54] Pecora L. M., Barahona M., “Synchronization of Oscillators in Complex Networks”, New research on chaos and complexity, Ch. 5, eds. Orsucci F. F., Sala N., Nova Science Publishers, 2006, 65–96

[55] Pecora L. M., Carroll T. L., “Synchronization in chaotic systems”, Phys. Rev. Lett., 64:8 (1990), 821–824 | DOI | MR | Zbl

[56] Pecora L. M., Carroll T. L., “Master stability functions for synchronized coupled systems”, Phys. Rev. Lett., 80:10 (1998), 2109–2112 | DOI

[57] Pikovsky A. S., Rosenblum M. G., Kurths J., Synchronization. A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, 2001 | MR | Zbl

[58] Rossoni E., Chen Y., Ding M., Feng J., “Stability of synchronous oscillations in a system of Hodgkin–Huxley neurons with delayed diffusive and pulsed coupling”, Phys. Rev. E, 71 (2005), 061904 | DOI | MR

[59] Sauer M., Kaiser F., “On-off intermittency and bubbling in the synchronization break-down of coupled lasers”, Phys. Lett. A, 243:1–2 (1998), 38–46 | DOI

[60] Schöll E., Schuster H. G. (eds.), Handbook of chaos control, Wiley-VCH, Weinheim, 2008 | MR

[61] Schöll E., Hiller G., Hövel P., Dahlem M. A., “Time-delayed feedback in neurosystems”, Philos. Trans. R. Soc. Lond. Ser. A. Math. Phys. Eng. Sci., 367:1891 (2009), 1079–1096 | DOI | MR | Zbl

[62] Shaw L. B., Schwartz I. B., Rogers E. A., Roy R., “Synchronization and time shifts of dynamical patterns for mutually delay-coupled fiber ring lasers”, Chaos, 16 (2006), 015111 | DOI | Zbl

[63] Sieber J., Wolfrum M., Lichtner M., Yanchuk S., “On the stability of periodic orbits in delay equations with large delay”, Discrete Contin. Dyn. Syst., 33:7 (2013), 3109–3134 ; arXiv: 1101.1197 | DOI | MR

[64] Takamatsu A., Tanaka R., Yamada H., Nakagaki T., Fujii T., Endo I., “Spatiotemporal symmetry in rings of coupled biological oscillators of physarum plasmodial slime mold”, Phys. Rev. Lett., 87 (2001), 078102 | DOI

[65] Terry J. R., Thornburg K. S., DeShazer D. J., VanWiggeren G. D., Zhu S., Ashwin P., Roy R., “Synchronization of chaos in an array of three lasers”, Phys. Rev. E, 59:4 (1999), 4036–4043 | DOI

[66] Vicente R., Gollo L. L., Mirasso C. R., Fischer I., Gordon P., “Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays”, Proc. Natl. Acad. Sci., 105 (2008), 17157 | DOI

[67] Vicente R., Mirasso C. R., Fischer I., “Simultaneous bidirectional message transmission in a chaos-bases communication scheme”, Opt. Lett., 32:4 (2007), 403–405 | DOI

[68] Wolfrum M., Yanchuk S., “Eckhaus instability in systems with large delay”, Phys. Rev. Lett., 96 (2006), 220201 | DOI

[69] Wünsche H. J., Bauer S., Kreissl J., Ushakov O., Korneyev N., Henneberger F., Wille E., Erzgräber H., Peil M., Elsäßer W., Fischer I., “Synchronization of delay-coupled oscillators: a study of semiconductor lasers”, Phys. Rev. Lett., 94 (2005), 163901 | DOI

[70] Yanchuk S., Perlikowski P., “Delay and periodicity”, Phys. Rev. E, 79 (2009), 046221 | DOI | MR

[71] Yanchuk S., Wolfrum M., “Instabilities of equilibria of delay-differential equations with large delay”, Proc. 5th EUROMECH Nonlinear Dynamics Conference, ENOC-2005, Eindhoven, Eindhoven University of Technology, Eindhoven, Netherlands, 2005, 1060–1065, eNOC Eindhoven (CD ROM)

[72] Yanchuk S., Wolfrum M., Hövel P., Schöll E., “Control of unstable steady states by long delay feedback”, Phys. Rev. E, 74 (2006), 026201 | DOI | MR

[73] Zaks M. A., Goldobin D. S., “Comment on ‘Time-averaged properties of unstable periodic orbits and chaotic orbits in ordinary differential equation systems’ ”, Phys. Rev. E, 81 (2010), 018201 | DOI | MR