Synchronizability of networks with strongly delayed links: a~universal classification
Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 4, Tome 48 (2013), pp. 134-148

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that for large coupling delays the synchronizability of delay-coupled networks of identical units relates in a simple way to the spectral properties of the network topology. The master stability function used to determine stability of synchronous solutions has a universal structure in the limit of large delay: it is rotationally symmetric around the origin and increases monotonically with the radius in the complex plane. We give details of the proof of this structure and discuss the resulting universal classification of networks with respect to their synchronization properties. We illustrate this classification by means of several prototype network topologies.
@article{CMFD_2013_48_a10,
     author = {V. Flunkert and S. Yanchuk and T. Dahms and E. Sch\"oll},
     title = {Synchronizability of networks with strongly delayed links: a~universal classification},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {134--148},
     publisher = {mathdoc},
     volume = {48},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2013_48_a10/}
}
TY  - JOUR
AU  - V. Flunkert
AU  - S. Yanchuk
AU  - T. Dahms
AU  - E. Schöll
TI  - Synchronizability of networks with strongly delayed links: a~universal classification
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2013
SP  - 134
EP  - 148
VL  - 48
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2013_48_a10/
LA  - ru
ID  - CMFD_2013_48_a10
ER  - 
%0 Journal Article
%A V. Flunkert
%A S. Yanchuk
%A T. Dahms
%A E. Schöll
%T Synchronizability of networks with strongly delayed links: a~universal classification
%J Contemporary Mathematics. Fundamental Directions
%D 2013
%P 134-148
%V 48
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2013_48_a10/
%G ru
%F CMFD_2013_48_a10
V. Flunkert; S. Yanchuk; T. Dahms; E. Schöll. Synchronizability of networks with strongly delayed links: a~universal classification. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 4, Tome 48 (2013), pp. 134-148. http://geodesic.mathdoc.fr/item/CMFD_2013_48_a10/