Comparison principles for the $p$-Laplacian operator
Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 4, Tome 48 (2013), pp. 27-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CMFD_2013_48_a1,
     author = {E. I. Galakhov},
     title = {Comparison principles for the $p${-Laplacian} operator},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {27--35},
     publisher = {mathdoc},
     volume = {48},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2013_48_a1/}
}
TY  - JOUR
AU  - E. I. Galakhov
TI  - Comparison principles for the $p$-Laplacian operator
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2013
SP  - 27
EP  - 35
VL  - 48
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2013_48_a1/
LA  - ru
ID  - CMFD_2013_48_a1
ER  - 
%0 Journal Article
%A E. I. Galakhov
%T Comparison principles for the $p$-Laplacian operator
%J Contemporary Mathematics. Fundamental Directions
%D 2013
%P 27-35
%V 48
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2013_48_a1/
%G ru
%F CMFD_2013_48_a1
E. I. Galakhov. Comparison principles for the $p$-Laplacian operator. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 4, Tome 48 (2013), pp. 27-35. http://geodesic.mathdoc.fr/item/CMFD_2013_48_a1/

[1] Mitidieri E., Pokhozhaev S. I., “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 234, 2001, 3–383 | MR | Zbl

[2] D'Ambrosio L., Mitidieri E., “A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities”, Adv. Math., 224 (2010), 967–1020 | DOI | MR

[3] Damascelli L., “Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 493–516 | DOI | MR | Zbl

[4] Dancer E. N., “Some notes on the method of moving planes”, Bull. Aust. Math. Soc., 46 (1992), 425–434 | DOI | MR | Zbl

[5] Galakhov E., “A comparison principle for quasilinear operators in unbounded domains”, Nonlinear Anal., 70 (2009), 4190–4194 | DOI | MR | Zbl

[6] Lou H., “On singular sets of local solutions to $p$-Laplace equations”, Chin. Ann. Math. Ser. B, 29 (2008), 521–530 | DOI | MR | Zbl

[7] Pucci P., Serrin J., The maximum principle, Progress in Nonlinear PDEs and their applications, 73, ed. H. Brezis, Birkhäuser, Basel–Boston–Berlin, 2007 | MR | Zbl

[8] Serrin J., Zou H., “Cauchy–Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities”, Acta Math., 189 (2002), 79–142 | DOI | MR | Zbl

[9] Vàzquez J., “A strong maximum principle for quasilinear elliptic operators”, Appl. Math. Optim., 12 (1984), 191–202 | DOI | MR | Zbl