Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2013_48_a0, author = {H.-O. Walther}, title = {Evolution systems for differential equations with variable time lags}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {5--26}, publisher = {mathdoc}, volume = {48}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2013_48_a0/} }
H.-O. Walther. Evolution systems for differential equations with variable time lags. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 4, Tome 48 (2013), pp. 5-26. http://geodesic.mathdoc.fr/item/CMFD_2013_48_a0/
[1] Valter Kh.-O., “Gladkost polupotokov dlya differentsialnykh uravnenii s zapazdyvaniem, zavisyaschim ot resheniya”, Sovrem. mat. Fundam. napravl., 1, 2003, 40–55 | MR | Zbl
[2] Diekmann O., van Gils S. A., Verduyn Lunel S. M., Walther H.-O., Delay equations: functional-, complex- and nonlinear analysis, Springer, N.Y., 1995 | MR | Zbl
[3] Hartung F., Krisztin T., Walther H.-O., Wu J., “Functional differential equations with state-dependent delays: theory and applications”, Handbook of Differential Equations, Ordinary Differential Equations, v. 3, 2006, 435–545 | DOI | MR
[4] Iserles A., “On the generalized pantograph functional-differential equation”, European J. Appl. Math., 4 (1993), 1–38 | DOI | MR | Zbl
[5] Kato T., McLeod J. B., “The functional-differential equation $y'(x)=ay(\lambda x)+by(x)$”, Bull. Amer. Math. Soc., 77 (1971), 891–937 | DOI | MR | Zbl
[6] Krisztin T., [lichnaya beseda], 2011
[7] Mallet-Paret J., Nussbaum R. D., Paraskevopoulos P., “Periodic solutions for functional differential equations with multiple state-dependent time lags”, Topol. Methods Nonlinear Anal., 3 (1994), 101–162 | MR | Zbl
[8] Walther H.-O., “The solution manifold and $C^1$-smoothness of solution operators for differential equations with state dependent delay”, J. Differential Equations, 195 (2003), 46–65 | DOI | MR | Zbl
[9] Walther H.-O., “Differential equations with locally bounded delay”, J. Differential Equations, 252:4 (2012), 3001–3039 | DOI | MR | Zbl