Operator linear-fractional relations: main properties and applications
Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 3, Tome 47 (2013), pp. 140-155.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of a global solution for a $2$-dimensional discrete equation of kinetics, the expansion with respect of smoothness is obtained, and the effect of progressing waves generated by the operator of interaction is investigated.
@article{CMFD_2013_47_a7,
     author = {V. A. Khatskevich and V. A. Senderov},
     title = {Operator linear-fractional relations: main properties and applications},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {140--155},
     publisher = {mathdoc},
     volume = {47},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2013_47_a7/}
}
TY  - JOUR
AU  - V. A. Khatskevich
AU  - V. A. Senderov
TI  - Operator linear-fractional relations: main properties and applications
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2013
SP  - 140
EP  - 155
VL  - 47
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2013_47_a7/
LA  - ru
ID  - CMFD_2013_47_a7
ER  - 
%0 Journal Article
%A V. A. Khatskevich
%A V. A. Senderov
%T Operator linear-fractional relations: main properties and applications
%J Contemporary Mathematics. Fundamental Directions
%D 2013
%P 140-155
%V 47
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2013_47_a7/
%G ru
%F CMFD_2013_47_a7
V. A. Khatskevich; V. A. Senderov. Operator linear-fractional relations: main properties and applications. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 3, Tome 47 (2013), pp. 140-155. http://geodesic.mathdoc.fr/item/CMFD_2013_47_a7/

[1] Azizov T. Ya., “O spektrakh nekotorykh klassov operatorov v gilbertovom prostranstve”, Mat. zametki, 9:3 (1971), 303–310 | MR | Zbl

[2] Azizov T. Ya., “O rasshireniyakh invariantnykh dualnykh par”, Ukr. mat. zh., 41:7 (1989), 958–961 | MR | Zbl

[3] Azizov T. Ya., Iokhvidov I. S., “Lineinye operatory v gilbertovykh prostranstvakh s $G$-metrikoi”, Usp. mat. nauk, 26:4 (1971), 43–92 | MR | Zbl

[4] Azizov T. Ya., Iokhvidov I. S., Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986 | MR

[5] Azizov T. Ya., Senderov V. A., “O strukture i spektre $J$-unitarnykh operatorov nekotorykh klassov”, Tr. NII mat. Voronezh. un-ta, 11, 1973, 3–9 | MR

[6] Azizov T., Khatskevich V., Senderov V., “Opisanie avtomorfizmov edinichnogo operatornogo shara”, Ukr. mat. vestn., 6:2 (2009), 139–149 | MR

[7] Azizov T., Khatskevich V., Senderov V., “O drobno-lineinykh otnosheniyakh i obrazakh uglovykh operatorov”, Ukr. mat. vestn., 8:1 (2011), 1–16 | MR

[8] Iokhvidov I. S., “Unitarnye operatory v prostranstve s indefinitnoi metrikoi”, Zap. Khark. matem. ob-va, 21, 1949, 79–86

[9] Iokhvidov E. I., Senderov V. A., “Drobno-lineinye operatornye preobrazovaniya i nekotorye ikh prilozheniya”, Trudy NII matem. VGU, 5, 1972, 52–58

[10] Krein M. G., “Ob odnom primenenii printsipa nepodvizhnoi tochki v teorii lineinykh preobrazovanii v prostranstve s indefinitnoi metrikoi”, Usp. mat. nauk, 5:2 (1950), 180–190 | MR | Zbl

[11] Krein M. G., “Ob odnom novom primenenii printsipa nepodvizhnoi tochki v teorii operatorov v prostranstve s indefinitnoi metrikoi”, DAN SSSR, 154:5 (1964), 1023–1026 | MR

[12] Krein M. G., Shmulyan Yu. L., “O plyus-operatorakh v prostranstve s indefinitnoi metrikoi”, Mat. issl., 1:1 (1966), 131–161 | MR

[13] Krein M. G., Shmulyan Yu. L., “$J$-polyarnoe predstavlenie plyus-operatorov”, Mat. issl., 1:2 (1966), 172–210 | MR

[14] Krein M. G., Shmulyan Yu. L., “O drobno-lineinykh preobrazovaniyakh s operatornymi koeffitsientami”, Mat. issl., 2:3 (1967), 64–96 | MR

[15] Pontryagin L. S., “Ermitovy operatory v prostranstve s indefinitnoi metrikoi”, Izv. AN SSSR. Ser. Mat., 8:6 (1944), 243–280 | MR | Zbl

[16] Senderov V. A., Khatskevich V. A., “O normirovannykh $J$-prostranstvakh i nekotorykh klassakh lineinykh operatorov v etikh prostranstvakh”, Mat. issl., 8:3 (1973), 56–75 | MR | Zbl

[17] Senderov V., Khatskevich V., “Problema Kënigsa i krainie nepodvizhnye tochki”, Funkts. analiz i ego prilozh., 44:1 (2010), 87–90 | DOI | MR

[18] Sobolev S. L., “O dvizhenii simmetrichnogo volchka s polostyu, napolnennoi zhidkostyu”, Zh. prikl. mekhan. i tekhn. fiz., 3 (1960), 20–55 | Zbl

[19] Stoilov S., Teoriya funktsii kompleksnogo peremennogo, v. 1, M., 1962

[20] Fillips R. S., “Rasshireniya dualnykh podprostranstv, invariantnykh otnositelno algebry”, Sb. perev. “Matematika”, 8:6 (1964), 81–208

[21] Khatskevich V. A., “Obobschennaya metrika Puankare na operatornom share”, Funkts. analiz i ego prilozh., 17:4 (1983), 92–93 | MR | Zbl

[22] Khatskevich V., Senderov V., “Uravneniya Abelya—Shrëdera dlya drobno-lineinykh otobrazhenii operatornykh sharov”, Dokl. RAN, 379:4 (2001), 455–458 | MR | Zbl

[23] Khatskevich V. A., Senderov V. A., “O vypuklosti, kompaktnosti i nepustote obrazov i proobrazov operatornykh drobno-lineinykh otnoshenii”, Dokl. RAN, 396:4 (2004), 465–468 | MR | Zbl

[24] Khatskevich V., Senderov V., “Problema Kënigsa dlya drobno-lineinykh otobrazhenii operatornykh sharov”, Dokl. RAN, 403:5 (2005), 607–609 | MR | Zbl

[25] Khatskevich V. A., Senderov V. A., “O faktorizatsii operatorov i o svoistvakh obrazov drobno-lineinykh otnoshenii”, Voronezhskaya zimnyaya matematicheskaya shkola S. G. Kreina, Tezisy dokladov, 2010, 132–133

[26] Khatskevich V. A., Senderov V. A., “O porozhdennykh plyus-operatorami operatornykh mnozhestvakh”, Vestn. VGU. Ser. Fiz. Mat., 2010, no. 2, 170–174

[27] Alpay D., Khatskevich V., “Linear fractional transformations: basic properties, applications to spaces of analytic functions and Shroeder's equation”, Int. J. Appl. Math., 2:4 (2000), 459–476 | MR | Zbl

[28] Azizov T., Khatskevich V., “A theorem on existence of invariant subspaces for $J$-binoncontractive operators”, Oper. Theory. Adv. Appl., 198 (2009), 41–48 | MR

[29] Bonsall F. F., “Indefinitely Isometric Linear Operators in a Reflexive Banach Space”, Quart. J. Math. Oxford (2), 6 (1955), 175–187 | DOI | MR

[30] Cowen C. C., “Iteration and the solution of functional equations for functions analytic in the unit disk”, Trans. Amer. Math. Soc., 265 (1981), 69–95 | DOI | MR | Zbl

[31] Cowen C. C., “Analytic solutions of Bottcher's functional equation in the unit disk”, Aequationes Math., 24 (1982), 187–194 | DOI | MR | Zbl

[32] Cowen C. C., “Linear fractional composition operators on $H^2$”, Integral Equations Operator Theory, 11 (1988), 151–160 | DOI | MR | Zbl

[33] Cowen C. C., MacCluer B. D., Composition operators on spaces of analytic functions, CRC Press, Boca Raton, 1995 | MR | Zbl

[34] Cowen C. C., MacCluer B. D., “Linear fractional maps of the ball and their composition operators”, Acta Sci. Math. (Szeged), 66 (2000), 351–376 | MR | Zbl

[35] Elin M., Harris L. A., Reich S., Shoikhet D., “Evolution equations and geometric function theory in $J^*$-algebras”, J. Nonlinear Convex Anal., 3 (2002), 81–121 | MR | Zbl

[36] Elin M., Khatskevich V., “The Koenigs embedding problem for operator affine mappings”, Contemp. Math., 382 (2005), 113–120 | DOI | MR | Zbl

[37] Elin M., Khatskevich V., “Triangular plus-operators in Banach spaces: applications to the Koenigs embedding problem”, J. Nonlinear Convex Anal., 6:1 (2005), 173–185 | MR | Zbl

[38] Halmos P. R., A Hilbert space problem book, Toronto–London, 1967 | MR | Zbl

[39] Harris L. A., “Linear fractional transformations of circular domains in operator spaces”, Indiana Univ. Math. J., 41 (1992), 125–147 | DOI | MR | Zbl

[40] Harris L. A., “Unbounded symmetric homogeneous domains in spaces of operators”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 22 (1995), 449–467 | MR | Zbl

[41] Khatskevich V. A., “Some global properties of fractional-linear transformations”, Oper. Theory. Adv. Appl., 73 (1994), 71–82 | MR

[42] Khatskevich V. A., “Generalized fractional linear transformations: convexity and compactness of the image and the pre-image; applications”, Studia Mathematica, 137:2 (1999), 169–175 | MR | Zbl

[43] Khatskevich V., Ostrovskii M., Shulman V., “Linear fractional relations for Hilbert space operators”, Math. Nachr., 279:8 (2006), 875–890 | DOI | MR | Zbl

[44] Khatskevich V., Reich S., Shoikhet D., “Abel–Schroder equations for linear fractional mappings and the Koenigs embedding problem”, Acta Sci. Math. (Szeged), 69 (2003), 67–98 | MR | Zbl

[45] Khatskevich V., Senderov V., “Basic properties of linear fractional mappings of operator balls: Schroder's equation”, Fields Inst. Commun., 25 (2000), 331–344 | MR | Zbl

[46] Khatskevich V. A., Senderov V. A., “Abel–Schroder type equations for maps of operator balls”, Funct. Differ. Equ., 10:1–2 (2003), 339–358 | MR

[47] Khatskevich V. A., Senderov V. A., “The KE-Problem: description of diagonal elements”, Proceedings of the International Conference (Crimea Autumn Mathematical School-Symposium, 2007), 2008, 37–41

[48] Khatskevich V. A., Senderov V. A., “On the structure of semigroups of operators acting in spaces with indefinite metric”, Oper. Theory. Adv. Appl., 188 (2008), 205–213

[49] Khatskevich V. A., Senderov V. A., “Extreme fixed points of operator LFT, applications to the Koenigs problem”, Nonlinear Anal., 71:12 (2009), e2517–e2520 | DOI | MR | Zbl

[50] Khatskevich V. A., Senderov V. A., “The Koenigs problem and extreme fixed points”, Oper. Theory. Adv. Appl., 198 (2009), 229–237 | MR

[51] Khatskevich V. A., Senderov V. A., “Topological and geometric properties of indefinite spaces and automorphisms of the unit operator ball”, Fixed point theory and its applications, Yokohama Publishers, Yokohama, 2010, 103–115 | MR

[52] Khatskevich V. A., Shoikhet D. M., Reich S., “Schroeder's functional equation and the Koenigs embedding property”, Journal of Nonlinear Analysis. Series A: Theory and Methods, 47 (2001), 3977–3988 | DOI | MR | Zbl

[53] Khatskevich V. A., Shulman V. S., “Operator fractional-linear transformations: convexity and compactness of image; applications”, Studia Mathematica, 116:2 (1995), 189–195 | MR | Zbl

[54] Khatskevich V. A., Zelenko L., “Indefinite metrics and dichotomy of solutions for linear differential equations in Hilbert spaces”, Chin. J. Math., 24:2 (1996), 99–112 | MR | Zbl

[55] Khatskevich V. A., Zelenko L., “The fractional-linear transformations of the operator ball and dichotomy of solutions to evolution equations”, Contemp. Math., 204 (1997), 149–154 | DOI | MR | Zbl

[56] Khatskevich V. A., Zelenko L., “Bistrict plus-operators in Krein spaces and dichotomous behavior of irreversible dynamical systems”, Oper. Theory. Adv. Appl., 118 (2000), 191–203 | MR | Zbl

[57] Koenigs G., “Recherches sur les intégrales de certaines équations fonctionnelles”, Annales Ecole Normale Superieure Ser. 3, 1, Supplement (1884), 3–41 | MR | Zbl

[58] Phillips R. S., “Dissipative operators and hyperbolic systems of partial differential equations”, Trans. Amer. Math. Soc., 90 (1959), 193–254 | DOI | MR | Zbl

[59] Phillips R. S., “Dissipative operators and parabolic partial differential equations”, Commun. Pure Appl. Math., 12 (1959), 249–276 | DOI | MR | Zbl

[60] Wogen W. R., “The smooth mappings which preserve the Hardy space $H^2(B_n)$”, Oper. Theory Adv. Appl., 35 (1988), 249–267 | MR