Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2013_47_a6, author = {E. V. Radkevich}, title = {On the large-time behavior of solutions to the {Cauchy} problem for a~$2$-dimensional discrete kinetic equation}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {108--139}, publisher = {mathdoc}, volume = {47}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2013_47_a6/} }
TY - JOUR AU - E. V. Radkevich TI - On the large-time behavior of solutions to the Cauchy problem for a~$2$-dimensional discrete kinetic equation JO - Contemporary Mathematics. Fundamental Directions PY - 2013 SP - 108 EP - 139 VL - 47 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2013_47_a6/ LA - ru ID - CMFD_2013_47_a6 ER -
%0 Journal Article %A E. V. Radkevich %T On the large-time behavior of solutions to the Cauchy problem for a~$2$-dimensional discrete kinetic equation %J Contemporary Mathematics. Fundamental Directions %D 2013 %P 108-139 %V 47 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2013_47_a6/ %G ru %F CMFD_2013_47_a6
E. V. Radkevich. On the large-time behavior of solutions to the Cauchy problem for a~$2$-dimensional discrete kinetic equation. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 3, Tome 47 (2013), pp. 108-139. http://geodesic.mathdoc.fr/item/CMFD_2013_47_a6/
[1] Vedenyapin V. V., Kineticheskie uravneniya Boltsmana i Vlasova, Fizmatlit, M., 2001
[2] Godunov S. K., Sultangazin U. M., “O diskretnykh modelyakh kineticheskogo uravneniya Boltsmana”, Usp. mat. nauk, 26:3(159) (1971), 3–51 | MR | Zbl
[3] Radkevich E. V., Matematicheskie aspekty neravnovesnykh protsessov, Izd-vo Tamary Rozhkovskoi, Novosibirsk, 2007
[4] Radkevich E. V., “O suschestvovanii globalnykh reshenii zadachi Koshi dlya diskretnykh kineticheskikh uravnenii”, Probl. mat. analiza, 62, 2011, 109–151
[5] Radkevich E. V., “O prirode nesuschestvovaniya dissipativnoi otsenki dlya diskretnykh kineticheskikh uravnenii”, Probl. mat. analiza, 69, 2013 (to appear)
[6] Babin A. V., Ilyin A. A., Titi E. S., “On the regularization mechanism for the periodic KdV equation”, Comm. Pure Appl. Math., 64 (2011), 0591–0648 | DOI | MR
[7] Boltzmann L., “On the Maxwell method to the reduction of hydrodynamic equations from the kinetic gas theory”, The L. Boltzmann Memories, Rep. Brit. Assoc., 1894, v. 2, ed. O. V. Kuznetsov, Nauka, M., 1984, 307–321 (in Russian)
[8] Broadwell T. E., “Study of rarified shear flow by the discrete velocity method”, J. of Fluid Mechanics, 19:3 (1964), 401–414 | DOI | MR | Zbl
[9] Chapman S., Cowling T., Mathematical theory of non-uniform gases, Cambridge University Press, Cambridge, 1970 | MR
[10] Chen G. Q., Levermore C. D., Lui T.-P., “Hyperbolic conservation laws with stiff relaxation terms and entropy”, Commun. Pure Appl. Math., 47:6 (1994), 787–830 | DOI | MR | Zbl
[11] Palin V. V., Radkevich E. V., “Mathematical aspects of the Maxwell problem”, Applicable Analysis, 88:8 (2009), 1233–1264 | DOI | MR | Zbl
[12] Radkevich E. V., “The existence of global solutions to the Cauchy problem for discrete kinetic equations. II”, J. Math. Sci. (N. Y.), 181:5 (2012), 701–750 | DOI | MR | Zbl