Localized solutions of a~piecewise linear model of the stationary Swift--Hohenberg equation on the line and on the plane
Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 3, Tome 47 (2013), pp. 60-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study a simplified model of the stationary Swift–Hohenberg equation, where the cubic nonlinearity is replaced by a piecewise linear function with similar properties. The main goal is to prove the existence of so-called localized solutions of this equation, i.e., solutions decaying to a homogeneous zero state with unbounded increase of the space variable. The following two cases of the space variable are considered: one-dimensional (on the whole line) and two-dimensional; in the latter case, radially symmetric solutions are studied. The existence of such solutions and increase of their number with change in the equation parameters are shown.
@article{CMFD_2013_47_a4,
     author = {N. E. Kulagin and L. M. Lerman},
     title = {Localized solutions of a~piecewise linear model of the stationary {Swift--Hohenberg} equation on the line and on the plane},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {60--77},
     publisher = {mathdoc},
     volume = {47},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2013_47_a4/}
}
TY  - JOUR
AU  - N. E. Kulagin
AU  - L. M. Lerman
TI  - Localized solutions of a~piecewise linear model of the stationary Swift--Hohenberg equation on the line and on the plane
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2013
SP  - 60
EP  - 77
VL  - 47
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2013_47_a4/
LA  - ru
ID  - CMFD_2013_47_a4
ER  - 
%0 Journal Article
%A N. E. Kulagin
%A L. M. Lerman
%T Localized solutions of a~piecewise linear model of the stationary Swift--Hohenberg equation on the line and on the plane
%J Contemporary Mathematics. Fundamental Directions
%D 2013
%P 60-77
%V 47
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2013_47_a4/
%G ru
%F CMFD_2013_47_a4
N. E. Kulagin; L. M. Lerman. Localized solutions of a~piecewise linear model of the stationary Swift--Hohenberg equation on the line and on the plane. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 3, Tome 47 (2013), pp. 60-77. http://geodesic.mathdoc.fr/item/CMFD_2013_47_a4/

[1] Abramovits M., Stigan I., Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR

[2] Andronov A. A., Vitt A. A., Khaikin S. E., Teoriya kolebanii, 2-e izd., Fizmatgiz, M., 1959

[3] Arnold V. I., Givental A. B., “Simplekticheskaya geometriya”, Itogi nauki i tekhn. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 4, 1985, 5–135 | MR

[4] Kulagin N. E., Lerman L. M., Shmakova T. G., “O radialnykh resheniyakh uravneniya Svifta–Khoenberga”, Tr. MIAN, 261, 2008, 188–209 | MR | Zbl

[5] Lerman L. M., Slinyakova N. A., “O dinamike kusochno-lineinoi modeli uravneniya Svifta–Khoenberga”, Nelineinaya dinamika, 5:4 (2009), 569–583

[6] Yanke E., Emde F., Lesh F., Spetsialnye funktsii. Formuly, grafiki, tablitsy, Nauka, M., 1964

[7] Aranson I. S., Gorshkov K. A., Lomov A. S., Rabinovich M. I., “Stable particle-like solutions of multidimensional nonlinear fields”, Phys. Rev. D, 43 (1990), 435–453 | MR | Zbl

[8] Beck M., Knobloch J., Lloyd D., Sandstede B., Wagenknecht Th., “Snakes, ladders, and isolas of localised patterns”, SIAM J. Math. Anal., 41:3 (2008), 936–972 | DOI | MR

[9] Belyakov L. A., Glebsky L. Yu., Lerman L. M., “Abundance of stable stationary localized solutions to the generalized Swift–Hohenberg equation”, Computer Math. Applic., 34:2–4 (1997), 253–266 | DOI | MR | Zbl

[10] Burke J., Knobloch E., “Localized states in the generalized Swift–Hohenberg equation”, Phys. Rev. E, 73 (2006), 056211 | DOI | MR

[11] Burke J., Knobloch E., “Multipulse states in the Swift–Hohenberg equation”, Discr. Cont. Dynam. Syst., 2009, Supplement, 109–117 | MR | Zbl

[12] Devaney R. L., “Homoclinic orbits in Hamiltonian systems”, J. Diff. Equat., 21 (1976), 431–439 | DOI | MR

[13] Doelman A., Sandstede B., Scheel A., Schneider G., “Propagation of hexagonal patterns near onset”, Euro. J. Appl. Math., 14 (2003), 85–110 | DOI | MR | Zbl

[14] Hilali M. F., Métens S., Borckmans P., Dewel G., “Pattern selection in the generalized Swift–Hohenberg model”, Phys. Rev. E, 51 (1995), 2046–2052 | DOI

[15] Jones C., Küpper N., “On the infinitely many solutions of a semilinear elliptic equation”, SIAM J. Math. Anal., 17:4 (1986), 803–835 | DOI | MR | Zbl

[16] Lega J., Moloney J. V., Newell A. S., “Swift–Hohenberg equation for lasers”, Phys. Rev. Lett., 73 (1994), 2978–2981 | DOI

[17] Lerman L., “Dynamical phenomena near a saddle-focus homoclinic connection in a Hamiltonian system”, J. Stat. Phys., 101:1–2 (2000), 357–372 | DOI | MR | Zbl

[18] Lloyd D., Sandstede B., “Localised radial patterns in the Swift–Hohenberg equation”, Nonlinearity, 22:2 (2009), 485–524 | DOI | MR | Zbl

[19] Peletier L. A., Rodriguez J. A., “Homoclinic orbits to a saddle-center in a fourth-order differential equation”, J. Diff. Equat., 203 (2004), 185–215 | DOI | MR | Zbl

[20] Swift J., Hohenberg P. S., “Hydrodynamic fluctuations at the convective instability”, Phys. Rev. A, 15 (1977), 319–328 | DOI

[21] Tlidi M., Georgiou M., Mandel P., “Transverse patterns in nascent optical bistability”, Phys. Rev., 48 (1993), 4605–4609 | DOI