On the solvability of an abstract differential equation of fractional order with a~variable operator
Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 3, Tome 47 (2013), pp. 18-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

One-valued solvability of initial problems for differential equations of fractional order with a variable operator is obtained by the Tanabe–Sobolevskii method modified in conformity with fractional-order equations in a Banach space.
@article{CMFD_2013_47_a1,
     author = {A. V. Glushak and H. K. Avad},
     title = {On the solvability of an abstract differential equation of fractional order with a~variable operator},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {18--32},
     publisher = {mathdoc},
     volume = {47},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2013_47_a1/}
}
TY  - JOUR
AU  - A. V. Glushak
AU  - H. K. Avad
TI  - On the solvability of an abstract differential equation of fractional order with a~variable operator
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2013
SP  - 18
EP  - 32
VL  - 47
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2013_47_a1/
LA  - ru
ID  - CMFD_2013_47_a1
ER  - 
%0 Journal Article
%A A. V. Glushak
%A H. K. Avad
%T On the solvability of an abstract differential equation of fractional order with a~variable operator
%J Contemporary Mathematics. Fundamental Directions
%D 2013
%P 18-32
%V 47
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2013_47_a1/
%G ru
%F CMFD_2013_47_a1
A. V. Glushak; H. K. Avad. On the solvability of an abstract differential equation of fractional order with a~variable operator. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 3, Tome 47 (2013), pp. 18-32. http://geodesic.mathdoc.fr/item/CMFD_2013_47_a1/

[1] Avad Kh. K., Glushak A. V., “O vozmuschenii abstraktnogo differentsialnogo uravneniya, soderzhaschego drobnye proizvodnye Rimana–Liuvillya”, Diff. uravn., 46:6 (2010), 859–873 | MR | Zbl

[2] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR

[3] Pskhu A. V., Kraevye zadachi dlya differentsialnykh uravnenii s chastnymi proizvodnymi drobnogo i kontinualnogo poryadka, Izd-vo KBNTs RAN, Nalchik, 2005

[4] Sobolevskii P. E., “Ob uravneniyakh parabolicheskogo tipa v banakhovykh prostranstvakh”, Tr. Mosk. Mat. ob-va, 10, 1961, 297–350 | MR | Zbl

[5] El-Borai M. M., “The fundamental solutions for fractional evolution equations of parabolic type”, J. Appl. Math. and Stoch. Anal., 3 (2004), 197–211 | DOI | MR | Zbl

[6] Kato T., “Integration of the equation of evolution in a Banach space”, J. Math. Soc. of Japan, 5 (1953), 208–234 | DOI | MR | Zbl

[7] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and application of fractional differential equations, Elsevier, 2006 | MR | Zbl