SBV regularity of systems of conservation laws and Hamilton–Jacobi equations
Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 2, Tome 46 (2012), pp. 31-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We review the SBV regularity for solutions to hyperbolic systems of conservation laws and Hamilton–Jacobi equations. We give an overview of the techniques involved in the proof, and a collection of related problems concludes the paper.
@article{CMFD_2012_46_a1,
     author = {S. Bianchini},
     title = {SBV regularity of systems of conservation laws and {Hamilton{\textendash}Jacobi} equations},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {31--43},
     year = {2012},
     volume = {46},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2012_46_a1/}
}
TY  - JOUR
AU  - S. Bianchini
TI  - SBV regularity of systems of conservation laws and Hamilton–Jacobi equations
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2012
SP  - 31
EP  - 43
VL  - 46
UR  - http://geodesic.mathdoc.fr/item/CMFD_2012_46_a1/
LA  - ru
ID  - CMFD_2012_46_a1
ER  - 
%0 Journal Article
%A S. Bianchini
%T SBV regularity of systems of conservation laws and Hamilton–Jacobi equations
%J Contemporary Mathematics. Fundamental Directions
%D 2012
%P 31-43
%V 46
%U http://geodesic.mathdoc.fr/item/CMFD_2012_46_a1/
%G ru
%F CMFD_2012_46_a1
S. Bianchini. SBV regularity of systems of conservation laws and Hamilton–Jacobi equations. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 2, Tome 46 (2012), pp. 31-43. http://geodesic.mathdoc.fr/item/CMFD_2012_46_a1/

[1] Oleinik O. A., “Razryvnye resheniya nelineinykh differentsialnykh uravnenii”, Usp. mat. nauk, 12:3 (1957), 3–73 | MR | Zbl

[2] Ambrosio L., De Lellis C., “A note on admissible solutions of 1d scalar conservation laws and 2d Hamilton–Jacobi equations”, J. Hyperbolic Differ. Equ., 1:4 (2004), 813–826 | DOI | MR | Zbl

[3] Ancona F., Marson A., “A wave-front tracking algorithm for $n\times n$ nongenuinely nonlinear conservation laws”, J. Differential Equations, 177 (2001), 454–493 | DOI | MR | Zbl

[4] Ancona F., Marson A., “Sharp convergence rate of the Glimm scheme for general nonlinear hyperbolic systems”, Comm. Math. Phys., 302:3 (2011), 581–630 | DOI | MR | Zbl

[5] Bianchini S., “BV solutions to semidiscrete schemes”, Arch. Ration. Mech. Anal., 167:1 (2003), 1–81 | MR | Zbl

[6] Bianchini S., “Relaxation limit of the Jin-Xin relaxation model”, Comm. Pure Appl. Math., 56:5 (2006), 688–753 | DOI | MR

[7] Bianchini S., “Stability of solutions for hyperbolic systems with coinciding shocks and rarefactions $L^\infty$”, SIAM J. Math. Anal., 33:4 (2001), 959–981 | DOI | MR | Zbl

[8] Bianchini S., Bressan A., “Vanishing viscosity solutions of nonlinear hyperbolic systems”, Ann. of. Math. (2), 161 (2005), 223–342 | DOI | MR | Zbl

[9] Bianchini S., Caravenna L., “SBV regularity for genuinely nonlinear, strictly hyperbolic systems of conservation laws in one space dimension”, ActaMath. Sci. Ser. B Engl. Ed., 32:1 (2012), 380–388 | MR | Zbl

[10] Bianchini S., Colombo R. M., Monti F., “$2\times2$ systems of conservation laws with $L^\infty$ data”, J. Differ. Equations, 249:12 (2010), 3466–3488 | DOI | MR | Zbl

[11] Bianchini S., Gloyer M., “An estimate on the flow generated by monotone operators”, Comm. Partial Differential Equations, 36:5 (2011), 777–796 | DOI | MR | Zbl

[12] Bianchini S., De Lellis C., Robyr R., “SBV regularity for Hamilton–Jacobi equations in $\mathbb R^n$”, Arch. Ration. Mech. Anal., 200:3 (2011), 1003–1021 | DOI | MR | Zbl

[13] Bianchini S., Tonon D., “SBV-like regularity for Hamilton–Jacobi equations with a convex Hamiltonian”, J. Math. Anal. Appl., 391:1 (2012), 190–208 | DOI | MR | Zbl

[14] Bianchini S., Tonon D., “SBV regularity for Hamilton–Jacobi equations with Hamiltonian depending on $(t,x)$”, SIAM J. Math. Anal., 44:3 (2012), 2179–2203 | DOI | MR | Zbl

[15] Bianchini S., Yu L., SBV-like regularity for general hyperbolic systems of conservation laws, 2012, arXiv: 1202.2680v1

[16] Bouchut F., James F., “One dimensional transport equations with discontinuous coefficients”, Comm. Partial Differential Equations, 24 (1999), 2173–2189 | DOI | MR | Zbl

[17] Bressan A., Hyperbolic systems of conservation laws. The one-dimensional Cauchy problem, Oxford Univ. Press, Oxford, 2000 | MR | Zbl

[18] Bressan A., Colombo R. M., “Decay of positive waves in nonlinear systems of conservation laws”, Ann. Scoula Norm. Super. Pisa Cl. Sci., 26:1 (1998), 133–160 | MR | Zbl

[19] Cannarsa P., Sinestrari C., Semiconcave functions, Hamilton–Jacobi equations, and optimal control, Birkhäuser, Boston, 2004 | MR | Zbl

[20] Dafermos C. M., “Continuous solutions for balance laws”, Ric. Mat., 55:1 (2006), 79–91 | DOI | MR | Zbl

[21] DiPerna R. J., “Compensated compactness and general systems of conservation laws”, Trans. Amer. Math. Soc., 292:2 (1985), 383–420 | DOI | MR

[22] Glimm J., “Solutions in the large for nonlinear hyperbolic systems of equations”, Comm. Pure Appl. Math., 18 (1965), 697–715 | DOI | MR | Zbl

[23] Glimm J., Lax P., Decay of solutions of systems of nonlinear hyperbolic conservation laws, AMS, Providence, 1970 | Zbl

[24] De Lellis C., Otto F., Westdickenberg M., “Structure of entropy solutions for multi-dimensional conservation laws”, Arch. Ration. Mech. Anal., 170 (2003), 137–184 | DOI | MR | Zbl

[25] Lions P.-L., Perthame B., Tadmor E., “A kinetic formulation of multidimensional scalar conservation laws and related equations”, J. Amer. Math. Soc., 7:1 (1994), 169–191 | DOI | MR | Zbl

[26] Robyr R., “SBV regularity of entropy solutions for a class of genuinely nonlinear scalar balance laws with non-convex flux function”, J. Hyperbolic Differ. Equ., 5:2 (2008), 449–475 | DOI | MR | Zbl