SBV regularity of systems of conservation laws and Hamilton--Jacobi equations
Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 2, Tome 46 (2012), pp. 31-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

We review the SBV regularity for solutions to hyperbolic systems of conservation laws and Hamilton–Jacobi equations. We give an overview of the techniques involved in the proof, and a collection of related problems concludes the paper.
@article{CMFD_2012_46_a1,
     author = {S. Bianchini},
     title = {SBV regularity of systems of conservation laws and {Hamilton--Jacobi} equations},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {31--43},
     publisher = {mathdoc},
     volume = {46},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2012_46_a1/}
}
TY  - JOUR
AU  - S. Bianchini
TI  - SBV regularity of systems of conservation laws and Hamilton--Jacobi equations
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2012
SP  - 31
EP  - 43
VL  - 46
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2012_46_a1/
LA  - ru
ID  - CMFD_2012_46_a1
ER  - 
%0 Journal Article
%A S. Bianchini
%T SBV regularity of systems of conservation laws and Hamilton--Jacobi equations
%J Contemporary Mathematics. Fundamental Directions
%D 2012
%P 31-43
%V 46
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2012_46_a1/
%G ru
%F CMFD_2012_46_a1
S. Bianchini. SBV regularity of systems of conservation laws and Hamilton--Jacobi equations. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 2, Tome 46 (2012), pp. 31-43. http://geodesic.mathdoc.fr/item/CMFD_2012_46_a1/

[1] Oleinik O. A., “Razryvnye resheniya nelineinykh differentsialnykh uravnenii”, Usp. mat. nauk, 12:3 (1957), 3–73 | MR | Zbl

[2] Ambrosio L., De Lellis C., “A note on admissible solutions of 1d scalar conservation laws and 2d Hamilton–Jacobi equations”, J. Hyperbolic Differ. Equ., 1:4 (2004), 813–826 | DOI | MR | Zbl

[3] Ancona F., Marson A., “A wave-front tracking algorithm for $n\times n$ nongenuinely nonlinear conservation laws”, J. Differential Equations, 177 (2001), 454–493 | DOI | MR | Zbl

[4] Ancona F., Marson A., “Sharp convergence rate of the Glimm scheme for general nonlinear hyperbolic systems”, Comm. Math. Phys., 302:3 (2011), 581–630 | DOI | MR | Zbl

[5] Bianchini S., “BV solutions to semidiscrete schemes”, Arch. Ration. Mech. Anal., 167:1 (2003), 1–81 | MR | Zbl

[6] Bianchini S., “Relaxation limit of the Jin-Xin relaxation model”, Comm. Pure Appl. Math., 56:5 (2006), 688–753 | DOI | MR

[7] Bianchini S., “Stability of solutions for hyperbolic systems with coinciding shocks and rarefactions $L^\infty$”, SIAM J. Math. Anal., 33:4 (2001), 959–981 | DOI | MR | Zbl

[8] Bianchini S., Bressan A., “Vanishing viscosity solutions of nonlinear hyperbolic systems”, Ann. of. Math. (2), 161 (2005), 223–342 | DOI | MR | Zbl

[9] Bianchini S., Caravenna L., “SBV regularity for genuinely nonlinear, strictly hyperbolic systems of conservation laws in one space dimension”, ActaMath. Sci. Ser. B Engl. Ed., 32:1 (2012), 380–388 | MR | Zbl

[10] Bianchini S., Colombo R. M., Monti F., “$2\times2$ systems of conservation laws with $L^\infty$ data”, J. Differ. Equations, 249:12 (2010), 3466–3488 | DOI | MR | Zbl

[11] Bianchini S., Gloyer M., “An estimate on the flow generated by monotone operators”, Comm. Partial Differential Equations, 36:5 (2011), 777–796 | DOI | MR | Zbl

[12] Bianchini S., De Lellis C., Robyr R., “SBV regularity for Hamilton–Jacobi equations in $\mathbb R^n$”, Arch. Ration. Mech. Anal., 200:3 (2011), 1003–1021 | DOI | MR | Zbl

[13] Bianchini S., Tonon D., “SBV-like regularity for Hamilton–Jacobi equations with a convex Hamiltonian”, J. Math. Anal. Appl., 391:1 (2012), 190–208 | DOI | MR | Zbl

[14] Bianchini S., Tonon D., “SBV regularity for Hamilton–Jacobi equations with Hamiltonian depending on $(t,x)$”, SIAM J. Math. Anal., 44:3 (2012), 2179–2203 | DOI | MR | Zbl

[15] Bianchini S., Yu L., SBV-like regularity for general hyperbolic systems of conservation laws, 2012, arXiv: 1202.2680v1

[16] Bouchut F., James F., “One dimensional transport equations with discontinuous coefficients”, Comm. Partial Differential Equations, 24 (1999), 2173–2189 | DOI | MR | Zbl

[17] Bressan A., Hyperbolic systems of conservation laws. The one-dimensional Cauchy problem, Oxford Univ. Press, Oxford, 2000 | MR | Zbl

[18] Bressan A., Colombo R. M., “Decay of positive waves in nonlinear systems of conservation laws”, Ann. Scoula Norm. Super. Pisa Cl. Sci., 26:1 (1998), 133–160 | MR | Zbl

[19] Cannarsa P., Sinestrari C., Semiconcave functions, Hamilton–Jacobi equations, and optimal control, Birkhäuser, Boston, 2004 | MR | Zbl

[20] Dafermos C. M., “Continuous solutions for balance laws”, Ric. Mat., 55:1 (2006), 79–91 | DOI | MR | Zbl

[21] DiPerna R. J., “Compensated compactness and general systems of conservation laws”, Trans. Amer. Math. Soc., 292:2 (1985), 383–420 | DOI | MR

[22] Glimm J., “Solutions in the large for nonlinear hyperbolic systems of equations”, Comm. Pure Appl. Math., 18 (1965), 697–715 | DOI | MR | Zbl

[23] Glimm J., Lax P., Decay of solutions of systems of nonlinear hyperbolic conservation laws, AMS, Providence, 1970 | Zbl

[24] De Lellis C., Otto F., Westdickenberg M., “Structure of entropy solutions for multi-dimensional conservation laws”, Arch. Ration. Mech. Anal., 170 (2003), 137–184 | DOI | MR | Zbl

[25] Lions P.-L., Perthame B., Tadmor E., “A kinetic formulation of multidimensional scalar conservation laws and related equations”, J. Amer. Math. Soc., 7:1 (1994), 169–191 | DOI | MR | Zbl

[26] Robyr R., “SBV regularity of entropy solutions for a class of genuinely nonlinear scalar balance laws with non-convex flux function”, J. Hyperbolic Differ. Equ., 5:2 (2008), 449–475 | DOI | MR | Zbl