Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2012_45_a9, author = {A. V. Faminskii and M. A. Opritova}, title = {On the initial-value problem for the {Kawahara} equation}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {132--150}, publisher = {mathdoc}, volume = {45}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2012_45_a9/} }
TY - JOUR AU - A. V. Faminskii AU - M. A. Opritova TI - On the initial-value problem for the Kawahara equation JO - Contemporary Mathematics. Fundamental Directions PY - 2012 SP - 132 EP - 150 VL - 45 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2012_45_a9/ LA - ru ID - CMFD_2012_45_a9 ER -
A. V. Faminskii; M. A. Opritova. On the initial-value problem for the Kawahara equation. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 1, Tome 45 (2012), pp. 132-150. http://geodesic.mathdoc.fr/item/CMFD_2012_45_a9/
[1] Berg I., Lefstrem I., Interpolyatsionnye neravenstva. Vvedenie, Mir, M., 1980 | MR
[2] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR
[3] Ilichev A. T., “O svoistvakh odnogo nelineinogo evolyutsionnogo uravneniya pyatogo poryadka, opisyvayuschego volnovye protsessy v sredakh so slaboi dispersiei”, Tr. MIAN, 186, 1989, 222–226 | MR | Zbl
[4] Kruzhkov S. N., Faminskii A. V., “Obobschennye resheniya zadachi Koshi dlya uravneniya Kortevega–de Friza”, Mat. sb., 120(162):3 (1983), 396–425 | MR | Zbl
[5] Kruzhkov S. N., Faminskii A. V., “O svoistvakh nepreryvnosti reshenii nekotorykh klassov nestatsionarnykh uravnenii”, Vestn. Mosk. un-ta. Cer. 1 matem. mekh., 1983, no. 3, 29–36 | MR | Zbl
[6] Marchenko A. V., “O dlinnyi volnakh v melkoi vode pod ledyanym pokrovom”, Prikl. matem. mekh., 52:2 (1988), 230–234 | Zbl
[7] Sangare K., “Smeshannaya zadacha v polupolose dlya obobschennogo uravneniya Kavakhary v prostranstve beskonechno differentsiruemykh eksponentsialno ubyvayuschikh funktsii”, Vestnik Ros. un-ta druzhby narodov. Cer. Mat., 10:1 (2003), 91–107
[8] Faminskii A. V., “Zadacha Koshi dlya kvazilineinykh uravnenii nechetnogo poryadka”, Mat. sb., 180:9 (1989), 1183–1210 | MR | Zbl
[9] Faminskii A. V., “Zadacha Koshi dlya uravneniya Kortevega–de Friza i ego obobschenii”, Trudy seminara im. I. G. Petrovskogo, 13, 1988, 56–105
[10] Fedoryuk M. V., Metod perevala, Nauka, M., 1977, 368 pp. | MR | Zbl
[11] Biagioni H. A., Linares F., “On the Benny–Lin and Kawahara equations”, J. Math. Anal. Appl., 211:1 (1997), 131–152 | DOI | MR | Zbl
[12] Cui S., Deng D., Tao S., “Global existence of solutions for the Cauchy problem of the Kawahara equation with $L^2$ initial data”, Acta Math. Sin. (Engl. Ser.), 22:5 (2006), 1457–1466 | DOI | MR | Zbl
[13] Cui S., Tao S., “Stricharts estimates for dispersive equations and solvability of the Kawahara equation”, J. Math. Anal. Appl., 304 (2005), 683–702 | DOI | MR | Zbl
[14] Ginibre G., Tsutsumi Y., “Uniqueness of solutions for the generalized Korteweg–de Vries equation”, SIAM J. Math. Anal., 20:6 (1989), 1388–1425 | DOI | MR | Zbl
[15] Kawahara T., “Oscillatory solitary waves in dispersive media”, J. Phys. Soc. Japan., 33:1 (1972), 260–264 | DOI
[16] Saut J.-C., “Sur quelques généralizations de l'equation de Korteweg–de Vries”, J. Math. Pures Appl., 58:1 (1979), 21–61 | MR | Zbl
[17] Stein E. M., “Oscillatory integrals in Fourier analysis”, Beijing lectures in harmonic analysis, Univ. Press, Princeton, 1971, 307–355 | MR
[18] Wang H., Cui S., Deng D., “Global existence of solutions for the Cauchy problem of the Kawahara equations in Sobolev spaces of negative indices”, Acta Math. Sin. (Engl. Ser.), 22:8 (2007), 1435–1446 | DOI | MR