Hidden oscillations in dynamical systems. 16 Hilbert's problem, Aizerman's and Kalman's conjectures, hidden attractors in Chua's circuits
Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 1, Tome 45 (2012), pp. 105-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present survey is devoted to efficient methods for localization of hidden oscillations in dynamical systems. Their application to Hilbert's sixteenth problem for quadratic systems, Aizerman's problem, and Kalman's problem on absolute stability of control systems, and to the localization of chaotic hidden attractors (the basin of attraction of which does not contain neighborhoods of equilibria) is considered. The synthesis of the describing function method with the applied bifurcation theory and numerical methods for computing hidden oscillations is described.
@article{CMFD_2012_45_a7,
     author = {G. A. Leonov and N. V. Kuznetsov},
     title = {Hidden oscillations in dynamical systems. 16 {Hilbert's} problem, {Aizerman's} and {Kalman's} conjectures, hidden attractors in {Chua's} circuits},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {105--121},
     publisher = {mathdoc},
     volume = {45},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2012_45_a7/}
}
TY  - JOUR
AU  - G. A. Leonov
AU  - N. V. Kuznetsov
TI  - Hidden oscillations in dynamical systems. 16 Hilbert's problem, Aizerman's and Kalman's conjectures, hidden attractors in Chua's circuits
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2012
SP  - 105
EP  - 121
VL  - 45
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2012_45_a7/
LA  - ru
ID  - CMFD_2012_45_a7
ER  - 
%0 Journal Article
%A G. A. Leonov
%A N. V. Kuznetsov
%T Hidden oscillations in dynamical systems. 16 Hilbert's problem, Aizerman's and Kalman's conjectures, hidden attractors in Chua's circuits
%J Contemporary Mathematics. Fundamental Directions
%D 2012
%P 105-121
%V 45
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2012_45_a7/
%G ru
%F CMFD_2012_45_a7
G. A. Leonov; N. V. Kuznetsov. Hidden oscillations in dynamical systems. 16 Hilbert's problem, Aizerman's and Kalman's conjectures, hidden attractors in Chua's circuits. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 1, Tome 45 (2012), pp. 105-121. http://geodesic.mathdoc.fr/item/CMFD_2012_45_a7/

[1] Aizerman M. A., “Ob odnoi probleme, kasayuscheisya ustoichivosti “v bolshom” dinamicheskikh sistem”, Usp. mat. nauk, 4:4(32) (1949), 187–188 | MR | Zbl

[2] Arnold V. I., Eksperimentalnaya matematika, Fazis, M., 2005

[3] Leonov G. A., “Predelnye tsikly uravneniya Lenara s razryvnymi koeffitsientami”, Dokl. RAN, 426:1 (2009), 47–50 | MR | Zbl

[4] Leonov G. A., Bragin V. O., Kuznetsov N. V., “Algoritm postroeniya kontrprimerov k probleme Kalmana”, Dokl. RAN, 433:2 (2010), 163–166 | Zbl

[5] Leonov G. A., Vagaitsev V. I., Kuznetsov N. V., “Algoritm lokalizatsii attraktorov Chua na osnove metoda garmonicheskoi linearizatsii”, Dokl. RAN, 433:3 (2010), 323–326 | MR | Zbl

[6] Leonov G. A., Kuznetsov N. V., “Predelnye tsikly kvadratichnykh sistem s vozmuschennym slabym fokusom 3-go poryadka i sedlovym sostoyaniem ravnovesiya na beskonechnosti”, Dokl. RAN, 434:1 (2010), 21–24 | MR | Zbl

[7] Leonov G. A., Kuznetsov N. V., “Algoritmy poiska skrytykh kolebanii v problemakh Aizermana i Kalmana”, Dokl. RAN, 439:2 (2011), 167–173 | MR | Zbl

[8] Leonov G. A., Kuznetsov N. V., Kudryashova E. V., “Pryamoi metod vychisleniya lyapunovskikh velichin dvumernykh dinamicheskikh sistem”, Tr. IMM UrO RAN, 16, no. 1, 2010, 119–126

[9] Leonov G. A., Kuznetsova O. A., “Vychislenie pervykh pyati lyapunovskikh velichin dlya sistemy Lenara”, Dokl. RAN, 425:1 (2009), 45–47 | MR

[10] Pliss V. A., Nekotorye problemy teorii ustoichivosti dvizheniya v tselom, Izd. LGU, L., 1958

[11] Artes J. C., Llibre J., “Quadratic vector fields with a weak focus of third order”, Publ. Math., 41 (1997), 7–39 | MR | Zbl

[12] Bernat J., Llibre J., “Counterexample to Kalman and Markus–Yamabe conjectures in dimension larger than 3”, Dyn. Contin., Discrete Impuls. Syst. Ser. A Math. Anal., 2:3 (1996), 337–379 | MR | Zbl

[13] Bragin V. O., Vagaitsev V. I., Kuznetsov N. V., Leonov G. A., “Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua's circuits”, Comput. Syst. Sci. Int., 50:4 (2011), 511–543 | DOI | MR

[14] Gubar' N., “Investigation of a piecewise linear dynamical system with three parameters”, J. Appl. Math. Mech., 25 (2005), 1519–1535 | DOI | MR

[15] Kalman R., “Physical and mathematical mechanisms of instability in nonlinear automatic control systems”, Transactions of ASME, 79:3 (1981), 553–566 | MR

[16] Khalil H., Nonlinear Systems, Prentice Hall, Englewood Cliffs, N.J., 2002 | Zbl

[17] Kuznetsov N., Kuznetsova O., Leonov G., “Investigation of limit cycles in two-dimensional quadratic systems”, Proc. of 2nd Internat. symposium Rare Attractors and Rare Phenomena in Nonlinear Dynamics, 2011, 120–123

[18] Kuznetsov N. V., Leonov G. A., “Lyapunov quantities, limit cycles and strange behavior of trajectories in two-dimensional quadratic systems”, Journal of Vibroengineering, 10:4 (2008), 460–467

[19] Kuznetsov N., Leonov G., Vagaitsev V., “Analytical-numerical method for attractor localization of generalized Chua's system”, IFAC Proceedings Volumes (IFAC-PapersOnline), 4:1 (2010), 29–33

[20] Lauvdal T., Murray R. M., Fossen T. I., “Stabilization of Integrator Chains in the Presence of Magnitude and Rate Saturations; a Gain Scheduling Approach”, Proceeding of the 1997 Conference on Decision and Control, 1997

[21] Leonov G., “Four normal size limit cycle in two-dimensional quadratic system”, International journal of bifurcation and chaos, 21:2 (2011), 425–429 | DOI | MR | Zbl

[22] Leonov G., “Effective methods for periodic oscillations search in dynamical systems”, Appl. Math. Mech., 74:1 (2010), 37–73 | MR

[23] Leonov G., Kuznetsov N., “Time-varying linearization and perron effects”, International Journal of Bifurcation and Chaos, 17:4 (2007), 1079–1107 | DOI | MR | Zbl

[24] Leonov G., Kuznetsov N., Vagaitsev V., “Localization of hidden Chua's attractors”, Phys. Lett. A, 375:23 (2011), 2230–2233 | DOI | MR | Zbl

[25] Leonov G. A., Kuznetsova O. A., “Lyapunov quantities and limit cycles of two-dimensional dynamical systems. Analytical methods and symbolic computation”, Regul. Chaotic Dyn., 15:2 (2010), 354–377 | DOI | MR | Zbl

[26] Markus L., Yamabe H., “Global stability criteria for differential systems”, Osaka J. Math., 12 (1960), 305–317 | MR | Zbl

[27] Shi S., “A concrete example of the existence of four limit cycles for plane quadratic systems”, Sci. Sinica, 23 (1980), 153–158 | MR | Zbl