Stabilization of solutions of Cauchy problems for divergence-free parabolic equations with decreasing minor coefficients
Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 1, Tome 45 (2012), pp. 62-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

Exact sufficient conditions on minor coefficients of parabolic equation are considered in this work. These conditions guarantee the stabilization of solutions of the Cauchy problem to zero in some classes of increasing initial functions.
@article{CMFD_2012_45_a4,
     author = {V. N. Denisov},
     title = {Stabilization of solutions of {Cauchy} problems for divergence-free parabolic equations with decreasing minor coefficients},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {62--74},
     publisher = {mathdoc},
     volume = {45},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2012_45_a4/}
}
TY  - JOUR
AU  - V. N. Denisov
TI  - Stabilization of solutions of Cauchy problems for divergence-free parabolic equations with decreasing minor coefficients
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2012
SP  - 62
EP  - 74
VL  - 45
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2012_45_a4/
LA  - ru
ID  - CMFD_2012_45_a4
ER  - 
%0 Journal Article
%A V. N. Denisov
%T Stabilization of solutions of Cauchy problems for divergence-free parabolic equations with decreasing minor coefficients
%J Contemporary Mathematics. Fundamental Directions
%D 2012
%P 62-74
%V 45
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2012_45_a4/
%G ru
%F CMFD_2012_45_a4
V. N. Denisov. Stabilization of solutions of Cauchy problems for divergence-free parabolic equations with decreasing minor coefficients. Contemporary Mathematics. Fundamental Directions, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 1, Tome 45 (2012), pp. 62-74. http://geodesic.mathdoc.fr/item/CMFD_2012_45_a4/

[1] Vatson G., Teoriya besselevykh funktsii, IL, M., 1949

[2] Denisov V. N., “Dostatochnye usloviya stabilizatsii resheniya zadachi Koshi dlya nedivergentnogo parabolicheskogo uravneniya s mladshimi koeffitsientami”, Sovrem. mat. Fundam. napravl., 36, 2010, 61–71 | MR

[3] Denisov V. N., “O povedenii reshenii parabolicheskikh uravnenii pri bolshikh znacheniyakh vremeni”, Usp. mat. nauk, 60:4 (2005), 145–212 | DOI | MR | Zbl

[4] Denisov V. N., “O stabilizatsii resheniya zadachi Koshi dlya nedivergentnogo parabolicheskogo uravneniya s mladshimi koeffitsientami v klassakh rastuschikh nachalnykh funktsii”, Dokl. RAN, 430 (2010), 586–588 | MR | Zbl

[5] Denisov V. N., “Stabilizatsiya resheniya zadachi Koshi dlya nedivergentnogo uravneniya s rastuschimi koeffitsientami”, Tr. MIAN, 270, 2010, 97–109 | MR | Zbl

[6] Ilin A. M., Kalashnikov A. S., Oleinik O. A., “Lineinye uravneniya vtorogo poryadka parabolicheskogo tipa”, Usp. mat. nauk, 17:3 (1962), 3–146 | MR | Zbl

[7] Ilin V. A., Sadovnichii V. A., Sendov B. Kh., Matematicheskii analiz, Iz-vo Mosk. un-ta, M., 2004

[8] Kandratev V. A., Landis E. M., Kachestvennaya teoriya differentsialnykh uravnenii v chastnykh proizvodnykh vtorogo poryadka. Differentsialnye uravneniya s chastnymi proizvodnymi, VINITI, M., 1988

[9] Landis E. M., Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipa, Nauka, M., 1971 | MR | Zbl

[10] Sansone Dzh., Obyknovennye differentsialnye uravneniya, IL, M., 1953

[11] Fedoryuk M. V., Obyknovennye differentsialnye uravneniya, Nauka, M., 1985 | MR

[12] Fridman A., Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1964 | MR